On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. 2017

Mark D Tarn, and Nicole Pamme
Department of Chemistry, The University of Hull, Cottingham Road, Hull, HU6 7RX, UK.

Magnetic particles have become popular in recent years for immunoassays due to their high surface-to-volume ratio and the ease of their manipulation. However, such assays also require multiple reaction and washing steps that are both time-consuming and manually laborious. Here, we describe a setup and methodology for performing rapid immunoassays on magnetic particles in continuous flow via their deflection through multiple laminar flow streams of reagents and washing solutions. In particular, we focus on the use of the microfluidic platform for a C-reactive protein (CRP) sandwich immunoassay in less than 60 s.

UI MeSH Term Description Entries
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D044085 Microfluidics The study of fluid channels and chambers of tiny dimensions of tens to hundreds of micrometers and volumes of nanoliters or picoliters. This is of interest in biological MICROCIRCULATION and used in MICROCHEMISTRY and INVESTIGATIVE TECHNIQUES. Microfluidic
D046210 Microfluidic Analytical Techniques Methods utilizing the principles of MICROFLUIDICS for sample handling, reagent mixing, and separation and detection of specific components in fluids. Microfluidic Analysis,Analyses, Microfluidic,Analysis, Microfluidic,Analytical Technique, Microfluidic,Analytical Techniques, Microfluidic,Microfluidic Analyses,Microfluidic Analytical Technique,Technique, Microfluidic Analytical,Techniques, Microfluidic Analytical
D056656 Lab-On-A-Chip Devices Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves. Microchip Analytical Devices,Microfluidic Devices,Microfluidic Lab-On-A-Chip,Microfluidic Microchips,Nanochip Analytical Devices,Analytical Device, Microchip,Analytical Device, Nanochip,Analytical Devices, Microchip,Analytical Devices, Nanochip,Device, Lab-On-A-Chip,Device, Microchip Analytical,Device, Microfluidic,Device, Nanochip Analytical,Devices, Lab-On-A-Chip,Devices, Microchip Analytical,Devices, Microfluidic,Devices, Nanochip Analytical,Lab On A Chip Devices,Lab-On-A-Chip Device,Lab-On-A-Chip, Microfluidic,Lab-On-A-Chips, Microfluidic,Microchip Analytical Device,Microchip, Microfluidic,Microchips, Microfluidic,Microfluidic Device,Microfluidic Lab On A Chip,Microfluidic Lab-On-A-Chips,Microfluidic Microchip,Nanochip Analytical Device

Related Publications

Mark D Tarn, and Nicole Pamme
August 2007, Lab on a chip,
Mark D Tarn, and Nicole Pamme
October 2012, Analytical chemistry,
Mark D Tarn, and Nicole Pamme
July 2012, Expert review of molecular diagnostics,
Mark D Tarn, and Nicole Pamme
January 2013, Methods in molecular biology (Clifton, N.J.),
Mark D Tarn, and Nicole Pamme
February 2013, Nanoscale,
Mark D Tarn, and Nicole Pamme
March 2023, Lab on a chip,
Mark D Tarn, and Nicole Pamme
May 2020, ACS biomaterials science & engineering,
Mark D Tarn, and Nicole Pamme
January 2001, Analytical chemistry,
Mark D Tarn, and Nicole Pamme
August 2014, Analytical chemistry,
Copied contents to your clipboard!