Ionophore strategy affects growth performance and carcass characteristics in feedlot steers. 2016

A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson

One hundred ninety-two steers (BW = 354 ± 23.5 kg) were used in a randomized block design to evaluate the effects of ionophore and ractopamine hydrochloride (RH) supplementation strategies on performance and carcass characteristics. Twelve pens of 4 steers were assigned to each of the following treatments: unsupplemented control (CON), laidlomycin propionate (12.1 mg/kg DM) with or without RH (LPRH and LP, respectively), and monensin sodium (36.4 mg/kg DM) with RH (MSRH). Steers were fed for 151 d, of which respective treatments received RH (Actogain; Zoetis, Florham Park, NJ) at a rate of 300 mg/(animal · d) for the final 32 d. Laidlomycin was removed from the LPRH treatment during this period, as no combination feeding has been approved. Upon harvest, carcass data were collected by trained personnel, and subsequent analysis of the LM was conducted to estimate tenderness using Warner-Bratzler shear force (WBSF). Prior to RH supplementation, both LP and LPRH had greater ADG ( ≤ 0.02) and G:F ( < 0.01) than CON, whereas MSRH was intermediate. During the final 32 d, MSRH improved G:F ( ≤ 0.02) compared to all other treatments and tended to increase ADG over unsupplemented controls ( = 0.05). Cattle receiving LP without RH had significantly greater BW at d 151 than CON ( = 0.02), whereas both RH treatments tended to improve final BW ( ≤ 0.09). Ionophores improved ADG ( ≤ 0.03) and G:F ( < 0.01) for the entire feeding period, and although LP-supplemented cattle had greater DMI for the final 32 d than both RH treatments ( ≤ 0.01), intakes for the 151-d trial were similar among treatments. Carcass weights were greater ( = 0.04) in cattle fed LP with no RH than CON, where cattle yielded an average of 12 kg more HCW. Ractopamine increased LM area in MSRH-supplemented cattle ( = 0.03) and tended to increase LM area for steers receiving LPRH ( = 0.07). Longissimus steaks of MSRH-supplemented cattle had greater WBSF values than CON ( = 0.04) after 7 d of postmortem aging and greater WBSF values than LPRH steaks after 28 d ( = 0.03). All other carcass and WBSF measurements were similar among treatments. The results of this study indicate that LP supplementation without RH may yield a performance similar to and carcass responses associated with the administration of a β-agonist. These results also suggest that performance and carcass characteristics for cattle fed LP are similar to those of cattle fed monensin throughout the feeding period.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008297 Male Males
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D001823 Body Composition The relative amounts of various components in the body, such as percentage of body fat. Body Compositions,Composition, Body,Compositions, Body
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders

Related Publications

A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
January 2020, Translational animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
January 2016, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
May 2021, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
November 1993, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
June 2001, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
September 2020, Animals : an open access journal from MDPI,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
December 2019, Translational animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
July 2007, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
February 1996, Journal of animal science,
A J Thompson, and Z K F Smith, and M J Corbin, and L B Harper, and B J Johnson
October 2021, Translational animal science,
Copied contents to your clipboard!