Binding sites for [3H]AF-DX 116 and effect of AF-DX 116 on endogenous acetylcholine release from rat brain slices. 1989

P A Lapchak, and D M Araujo, and R Quirion, and B Collier
Department of Pharmacology, McGill University, Montreal, Que., Canada.

The present study shows that the putative M2 ligand, [3H]AF-DX 116, binds to two classes of muscarinic sites in homogenates of rat hippocampus, striatum and cerebral cortex: one with a high affinity (Kd less than 5 nM)/low capacity (Bmax = 30-63 fmol/mg protein), and a second of lower affinity (Kd greater than 65 nM) and higher capacity (Bmax greater than 190 fmol/mg protein). In experiments which tested the effects of the muscarinic antagonists on acetylcholine (ACh) release from brain slices, the non-selective antagonist (-)-quinuclidinyl benzylate and atropine significantly enhanced the potassium (25 mM)-evoked release of ACh. This effect was mimicked by the M2 ligand AF-DX 116, but neither the M1-selective antagonist pirenzepine, nor the putative M3-muscarinic antagonist, 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), altered ACh release. Also, the muscarinic agonist, oxotremorine, significantly depressed evoked ACh release from brain slices, an effect that was completely antagonized by atropine or by AF-DX 116, but not by pirenzepine or 4-DAMP. Thus, it appears that presynaptic muscarinic autoreceptors in the rat hippocampus, striatum and cerebral cortex belong to the M2 subtype of muscarinic receptors.

UI MeSH Term Description Entries
D008297 Male Males
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P A Lapchak, and D M Araujo, and R Quirion, and B Collier
January 1989, Synapse (New York, N.Y.),
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
February 1996, Nuclear medicine and biology,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
October 1987, Life sciences,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
January 1980, Acta physiologica latino americana,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
February 1976, The Journal of pharmacology and experimental therapeutics,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
November 1985, Brain research,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
November 1985, Naunyn-Schmiedeberg's archives of pharmacology,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
March 1977, Brain research,
P A Lapchak, and D M Araujo, and R Quirion, and B Collier
September 1984, Neuroscience letters,
Copied contents to your clipboard!