Mathematical model of the changes in heart rate elicited by vagal stimulation. 1989

F Dexter, and M N Levy, and Y Rudy
Department of Investigative Medicine, Mt. Sinai Medical Center, Cleveland, OH 44106.

We developed a mathematical model of the underlying cellular mechanisms responsible for the changes in sinus cycle length (SCL) elicited by vagal stimulation in intact animals. The model incorporated a stimulation-mediated depletion of the releasable pool of acetylcholine (ACh) in the nerve endings, the in vitro reaction kinetics of acetylcholinesterase, and the electrical activity of a pacemaker cell with six membrane ionic currents. SCL increased linearly with the frequency of simulated vagal stimulation, as it does in animal experiments, because the concentration of ACh in the neuroeffector junction [( ACh]) saturated as the frequency of stimulation was increased and because SCL increased geometrically in response to increases in [ACh]. The dependence of SCL on the timing of vagal stimulation in the cardiac cycle resulted, in part, from the dependence of [ACh] on SCL. Simulated vagal stimulation entrained the sinus node because the rate of activation and inactivation of ACh-activated K+ channels depended only weakly on membrane potential during diastolic depolarization. SCL increased geometrically with [ACh], because 1) during diastolic depolarization, the amplitude of the ACh-activated K+ current was approximately equal to the amplitude of the sum of the other ionic currents, 2) [ACh] was low enough to saturate neither acetylcholinesterase nor the cellular system that activates the ACh-activated K+ channels, 3) the pacemaker cell membrane behaved electrotonically like a capacitor, and 4) the sum of all the ionic currents increased linearly with the amplitude of the ACh-activated K+ current.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001145 Arrhythmias, Cardiac Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction. Arrhythmia,Arrythmia,Cardiac Arrhythmia,Cardiac Arrhythmias,Cardiac Dysrhythmia,Arrhythmia, Cardiac,Dysrhythmia, Cardiac
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus

Related Publications

F Dexter, and M N Levy, and Y Rudy
January 1974, Pharmacology, biochemistry, and behavior,
F Dexter, and M N Levy, and Y Rudy
January 1996, Anesthesia progress,
F Dexter, and M N Levy, and Y Rudy
October 1994, Archives des maladies du coeur et des vaisseaux,
F Dexter, and M N Levy, and Y Rudy
January 1972, Electroencephalography and clinical neurophysiology,
F Dexter, and M N Levy, and Y Rudy
February 2016, Journal of cardiovascular translational research,
F Dexter, and M N Levy, and Y Rudy
May 2008, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
F Dexter, and M N Levy, and Y Rudy
May 2010, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
F Dexter, and M N Levy, and Y Rudy
July 1971, The American journal of physiology,
Copied contents to your clipboard!