Joint MR-PET Reconstruction Using a Multi-Channel Image Regularizer. 2017

Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
Bernard and Irene Schwartz Center for Biomedical Imaging, and the Center for Advanced Imaging Innovation and Research (CAIR), in the Department of Radiology at NYU School of Medicine, New York, NY, United States.

While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, the acquired data sets are still usually reconstructed separately. We propose a new multi-modality reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated multi-channel regularization functional that jointly reconstructs images from both modalities. In this way, information about the underlying anatomy is shared during the image reconstruction process while unique differences are preserved. Results from numerical simulations and in-vivo experiments using a range of accelerated MR acquisitions and different MR image contrasts demonstrate improved PET image quality, resolution, and quantitative accuracy.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D049268 Positron-Emission Tomography An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower. PET Imaging,PET Scan,Positron-Emission Tomography Imaging,Tomography, Positron-Emission,Imaging, PET,Imaging, Positron-Emission Tomography,PET Imagings,PET Scans,Positron Emission Tomography,Positron Emission Tomography Imaging,Positron-Emission Tomography Imagings,Scan, PET,Tomography Imaging, Positron-Emission,Tomography, Positron Emission

Related Publications

Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
January 2018, IEEE transactions on medical imaging,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
August 2015, Medical physics,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
June 2023, IEEE transactions on medical imaging,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
January 2015, Physics in medicine and biology,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
May 2020, Medical image analysis,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
July 2017, Physics in medicine and biology,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
May 2021, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
September 2018, IEEE transactions on radiation and plasma medical sciences,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
February 2017, Medical image analysis,
Florian Knoll, and Martin Holler, and Thomas Koesters, and Ricardo Otazo, and Kristian Bredies, and Daniel K Sodickson
August 2014, Molecular imaging and biology,
Copied contents to your clipboard!