Fine structure of muscles in the tick Hyalomma (Hyalomma) dromedarii (Ixodoidea: Ixodidae). 1989

S M el Shoura
Department of Microbiology and Parasitology, College of Medicine, King Saud University, Abha, Kingdom of Saudi Arabia.

Skeletal and visceral muscles are distinguished in the unfed nymph Hyalomma (Hyalomma) dromedarii according to position, structure and function. The skeletal muscles include the capitulum, dorsoventral and leg oblique muscles. Their muscle fibres have the striated pattern of successive sarcomeres whose thick myosin filaments are surrounded by orbitals of up to 12 thin actin filaments. The cell membrane invaginates into tubular system (T) extending deeply into the sarcoplasm and closely associated to cisternae of sarcoplasmic reticulum (SR). The T and SR forming two-membered 'dyads' are considered to be the main route of calcium ions whose movements are synchronized with the motor impulse to control contraction and relaxation in most muscles. Two types of skeletal muscle fibres are recognized, and are suggested as representing different physiological phases. In the visceral-muscle fibres investing tick internal organs, the actin and myosin filaments are slightly interrupted, and the T and SR are well demonstrated. Both skeletal and visceral muscles are invaginated by tracheoles and innervated by nerve axons containing synaptic vesicles.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009758 Nymph The immature stage in the life cycle of those orders of insects characterized by gradual metamorphosis, in which the young resemble the imago in general form of body, including compound eyes and external wings; also the 8-legged stage of mites and ticks that follows the first moult.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013987 Ticks Blood-sucking acarid parasites of the order Ixodida comprising two families: the softbacked ticks (ARGASIDAE) and hardbacked ticks (IXODIDAE). Ticks are larger than their relatives, the MITES. They penetrate the skin of their host by means of highly specialized, hooked mouth parts and feed on its blood. Ticks attack all groups of terrestrial vertebrates. In humans they are responsible for many TICK-BORNE DISEASES, including the transmission of ROCKY MOUNTAIN SPOTTED FEVER; TULAREMIA; BABESIOSIS; AFRICAN SWINE FEVER; and RELAPSING FEVER. (From Barnes, Invertebrate Zoology, 5th ed, pp543-44) Ixodida,Ixodidas,Tick

Related Publications

S M el Shoura
September 2010, Pakistan journal of biological sciences : PJBS,
S M el Shoura
September 1984, Journal of medical entomology,
S M el Shoura
February 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
S M el Shoura
December 2001, Journal of the Egyptian Society of Parasitology,
S M el Shoura
September 1988, Journal of medical entomology,
Copied contents to your clipboard!