Prediction of Neonatal Seizures in Hypoxic-Ischemic Encephalopathy Using Electroencephalograph Power Analyses. 2017

Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri. Electronic address: jains@neuro.wustl.edu.

The severity of the initial encephalopathy in neonatal hypoxic-ischemic encephalopathy correlates with seizure burden. Early electroencephalograph (EEG) background activity reflects the severity of encephalopathy. Thus, we hypothesized that early EEG background would be predictive of subsequent seizures in neonatal hypoxic-ischemic encephalopathy. This study included infants undergoing therapeutic hypothermia at St. Louis Children's Hospital between January 2009 and April 2013. Two pediatric epilepsy specialists independently characterized EEG background qualitatively using amplitude-integrated EEG trends. Total EEG power in the 1-20 Hz frequency band was calculated for quantitative EEG background assessment. Seizures were identified on conventional full montage EEG. Statistical analysis was performed using logistic regression. Seventy-eight of the 93 eligible infants had artifact-free EEG data; 23 of 78 infants (29%) developed seizures, and of these, 11 developed status epilepticus. The best predictors of subsequent seizures during the first hour of EEG recording were a flat tracing pattern on amplitude-integrated EEG (sensitivity 26%, specificity 98%, likelihood ratio 13, positive predictive value 85%) and the total EEG power less than 10 μV2 (sensitivity 52%, specificity 98%, likelihood ratio 30, positive predictive value 92%). Early EEG biomarkers predict subsequent seizures in infants with hypoxic-ischemic encephalopathy. Compared with the qualitative amplitude-integrated EEG background, total EEG power improves our ability to identify high-risk infants from the first hour of EEG recording. Infants with a total EEG power of less than 10 μV2 have a 90% risk of subsequent seizures. Quantitative EEG measures could stratify cohorts while evaluating novel neuroprotective strategies in neonatal hypoxic-ischemic encephalopathy.

UI MeSH Term Description Entries
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D007223 Infant A child between 1 and 23 months of age. Infants
D008297 Male Males
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012189 Retrospective Studies Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons. Retrospective Study,Studies, Retrospective,Study, Retrospective
D012372 ROC Curve A graphic means for assessing the ability of a screening test to discriminate between healthy and diseased persons; may also be used in other studies, e.g., distinguishing stimuli responses as to a faint stimuli or nonstimuli. ROC Analysis,Receiver Operating Characteristic,Analysis, ROC,Analyses, ROC,Characteristic, Receiver Operating,Characteristics, Receiver Operating,Curve, ROC,Curves, ROC,ROC Analyses,ROC Curves,Receiver Operating Characteristics
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity

Related Publications

Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
February 2019, Pediatric neurology,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
January 2014, International journal of clinical and experimental medicine,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
January 2014, Molecular & cellular epilepsy,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
February 2017, Journal of child neurology,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
September 2011, Epilepsy currents,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
June 2011, Journal of child neurology,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
February 2023, Epilepsia,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
January 2018, Medicina,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
January 1980, Mead Johnson Symposium on Perinatal and Developmental Medicine,
Siddharth V Jain, and Amit Mathur, and Preethi Srinivasakumar, and Michael Wallendorf, and Joseph P Culver, and John M Zempel
January 2000, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!