Purification and characterization of dihydropyrimidine dehydrogenase from pig liver. 1989

B Podschun, and G Wahler, and K D Schnackerz
Institute of Physiological Chemistry, University of Würzburg, Federal Republic of Germany.

Dihydropyrimidine dehydrogenase was isolated from cytosolic pig liver extracts and purified 3100-fold to apparent homogeneity. Purification made use of ammonium sulfate fractionation, precipitation with acetic acid and chromatography on DEAE-cellulose and 2',5'-ADP-Sepharose with 28% recovery of total activity. The native enzyme has a molecular mass of 206 kDa and is apparently composed of two similar, if not identical, subunits. Proteolytic cleavage reveals two fragments with apparent molecular masses of 92 kDa and 12 kDa. The C-terminal 12-kDa fragment seems to be extremely hydrophobic. The enzyme contains tightly associated compounds including four flavin nucleotide molecules and 32 iron atoms/206-kDa molecule. The iron atoms are probably present in iron-sulfur centers. The flavins released from the enzyme were identified as FAD and FMN in equal amounts. An isoelectric point of 4.65 was determined for the dehydrogenase. Apparent kinetic parameters were obtained for the substrates thymine, uracil, 5-aminouracil, 5-fluorouracil and NADPH.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D042943 Dihydrouracil Dehydrogenase (NADP) An oxidoreductase involved in pyrimidine base degradation. It catalyzes the catabolism of THYMINE; URACIL and the chemotherapeutic drug, 5-FLUOROURACIL. Dihydropyrimidine Dehydrogenase,Dihydrothymine Dehydrogenase (NADP),Dehydrogenase, Dihydropyrimidine

Related Publications

B Podschun, and G Wahler, and K D Schnackerz
August 1992, The Journal of biological chemistry,
B Podschun, and G Wahler, and K D Schnackerz
August 1990, The Journal of biological chemistry,
B Podschun, and G Wahler, and K D Schnackerz
August 1996, Archives of biochemistry and biophysics,
B Podschun, and G Wahler, and K D Schnackerz
January 1992, Biochemical and biophysical research communications,
B Podschun, and G Wahler, and K D Schnackerz
July 1997, Protein expression and purification,
B Podschun, and G Wahler, and K D Schnackerz
May 1985, The Journal of biological chemistry,
B Podschun, and G Wahler, and K D Schnackerz
March 1977, Archives of biochemistry and biophysics,
B Podschun, and G Wahler, and K D Schnackerz
March 1970, Biochimica et biophysica acta,
B Podschun, and G Wahler, and K D Schnackerz
January 2001, Acta crystallographica. Section D, Biological crystallography,
B Podschun, and G Wahler, and K D Schnackerz
September 1993, Biochemical pharmacology,
Copied contents to your clipboard!