Modulation of Benzo[a]Pyrene Induced Anxiolytic-Like Behavior by Retinoic Acid in Zebrafish: Involvement of Oxidative Stress and Antioxidant Defense System. 2017

Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, 753003, India.

Benzo[a]pyrene (B[a]P) is commonly associated with oxidative stress-induced neurotoxicity. Retinoic acid (RA) has been shown to exhibit neuroprotection in brain, and disruption of RA signaling via excess or deficient RA can lead to oxidative stress. B[a]P contamination in aquatic environment has been shown to lower the internal RA level. Thus, the present study was conducted in wild-type zebrafish to ameliorate the neurotoxic effect of B[a]P by waterborne RA co-supplementation. Findings showed that B[a]P induced anxiolytic-like behavioral response, and altered antioxidant activity in zebrafish is attenuated by RA. Our study also advocated the neurotoxic potential of RA treatment alone in control condition. Previous findings showed that periventricular gray zone (PGZ) of optic tectum (TeO) in zebrafish brain regulates anxiety-like behavior. The augmented pyknotic neuronal counts in PGZ following B[a]P treatment was ameliorated by RA co-supplementation. Further, presence of B[a]P in the cell milieu is known to induce oxidative stress through increase expression of cytochrome P450 1A1 (CYP1A1), an enzyme necessary for metabolic breakdown of both B[a]P and RA. Any deviation from the required concentration of RA leads to production of reactive oxygen species. Further, low availability of RA in cell milieu is known to decrease the expression of Nrf2, a transcription factor necessary for the expression of several antioxidants and antioxidant enzymes. Recent studies also showed that RA increases glutathione synthesis and exhibits neuroprotective properties in brain cells. The findings of the present study address the potential role of exogenous RA co-supplementation as a therapeutic intervention against B[a]P-induced depletion of RA, causing neurotoxicity in zebrafish.

UI MeSH Term Description Entries
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
January 1993, Basic life sciences,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
April 2012, Immunopharmacology and immunotoxicology,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
January 2013, Toxicology and applied pharmacology,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
April 2008, Phytotherapy research : PTR,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
February 2018, Free radical biology & medicine,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
August 2020, Antioxidants (Basel, Switzerland),
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
June 1996, Mutation research,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
January 2018, Oxidative medicine and cellular longevity,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
January 2002, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Ratnalipi Mohanty, and Saroj Kumar Das, and Manorama Patri
September 2017, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Copied contents to your clipboard!