[Structural studies of chromatin remodeling factors]. 2016

O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
Biological Faculty, Moscow State University, Moscow, 119234 Russia.

Changes of chromatin structure require participation of chromatin remodeling factors (CRFs), which are ATP-dependent multisubunit complexes that change the structure of the nucleosome without covalently modifying its components. CRFs act together with other protein factors to regulate the extent of chromatin condensation. Four CRF families are currently distinguished based on their structural and biochemical characteristics: SWI/SNF, ISWI, Mi-2/CHD, and SWR/INO80. X-ray diffraction analysis and electron microscopy are the main methods to obtain structural information about macromolecules. CRFs are difficult to obtain in crystal because of their large sizes and structural heterogeneity, and transmission electron microscopy (TEM) is mostly employed in their structural studies. The review considers all structures obtained for CRFs by TEM and discusses several models of CRF-nucleosome interactions.

UI MeSH Term Description Entries
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D002868 Chromosomal Proteins, Non-Histone Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens. Non-Histone Chromosomal Proteins,Chromosomal Proteins, Non Histone,Chromosomal Proteins, Nonhistone,Non-Histone Chromosomal Phosphoproteins,Chromosomal Phosphoproteins, Non-Histone,Non Histone Chromosomal Phosphoproteins,Non Histone Chromosomal Proteins,Nonhistone Chromosomal Proteins,Proteins, Non-Histone Chromosomal
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074183 ATPases Associated with Diverse Cellular Activities A large highly conserved family of ATPases with diverse functions in cells that are characterized by the presence of a P-LOOP and a ring shape. They couple the energy generated by ATP hydrolysis to remodeling or mechanical translocation of their target molecules. AAA ATPase,AAA Protease,AAA+ ATPase,AAA+ Protease,AAA ATPases,AAA Proteases,AAA+ ATPases,AAA+ Proteases,ATPase, AAA,ATPase, AAA+,ATPases, AAA+,Protease, AAA,Protease, AAA+,Proteases, AAA,Proteases, AAA+
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D042002 Chromatin Assembly and Disassembly The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA. Chromatin Remodeling,Chromatin Assembly,Chromatin Disassembly,Chromatin Modeling,Chromatin Disassemblies,Disassembly, Chromatin,Remodeling, Chromatin

Related Publications

O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
February 2005, Structure (London, England : 1993),
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
November 2006, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
January 2013, Tsitologiia,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
October 2002, Proceedings of the National Academy of Sciences of the United States of America,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
January 2005, Progress in molecular and subcellular biology,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
June 1998, Current opinion in cell biology,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
December 2006, Bioinformatics (Oxford, England),
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
January 2001, Journal of biochemistry,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
March 1981, Biochemistry,
O I Volokh, and N I Derkacheva, and V M Studitsky, and O S Sokolova
December 2019, Current opinion in structural biology,
Copied contents to your clipboard!