Molecular cloning of cDNA for cholesterol 7 alpha-hydroxylase from rat liver microsomes. Nucleotide sequence and expression. 1989

M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
Department of Biochemistry, School of Dentistry, Hiroshima University, Japan.

A complete cDNA clone encoding cholesterol 7 alpha-hydroxylase was isolated from a rat liver cDNA library by the use of specific antibodies to the enzyme. The isolated cDNA clone was 3.6 kbp long and contained a 1509-bp open reading frame encoding 503 amino acid residues (Mr = 56,880). The identity of the cDNA was confirmed by expression of cholesterol 7 alpha-hydroxylase activity and the immunoreactive protein in COS cells transfected with pSVL expression vector carrying the cDNA insert. The primary structure of cholesterol 7 alpha-hydroxylase deduced from the nucleotide sequence of the cDNA indicated that the enzyme constitutes a novel P-450 family.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002790 Cholesterol 7-alpha-Hydroxylase A membrane-bound cytochrome P450 enzyme that catalyzes the 7-alpha-hydroxylation of CHOLESTEROL in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP7, converts cholesterol to 7-alpha-hydroxycholesterol which is the first and rate-limiting step in the synthesis of BILE ACIDS. CYP7,CYP7A,Cytochrome P-450 CYP7,CYP 7,CYP 7A,Cholesterol 7-alpha-Monooxygenase,Cholesterol 7alpha-Hydroxylase,Cholesterol-7-Hydroxylase,Cytochrome P450 7,Cholesterol 7 Hydroxylase,Cholesterol 7 alpha Hydroxylase,Cholesterol 7 alpha Monooxygenase,Cholesterol 7alpha Hydroxylase,Cytochrome P 450 CYP7
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
July 1990, FEBS letters,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
March 1993, Internal medicine (Tokyo, Japan),
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
June 1987, The Journal of biological chemistry,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
November 1974, Archives of biochemistry and biophysics,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
January 1979, European journal of biochemistry,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
December 1981, Biochemical medicine,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
October 1992, Biochimica et biophysica acta,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
July 1995, Biochemical pharmacology,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
July 1990, The Journal of biological chemistry,
M Noshiro, and M Nishimoto, and K Morohashi, and K Okuda
January 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!