Linking metabolic reprogramming to therapy resistance in cancer. 2017

Andrea Morandi, and Stefano Indraccolo
Department of Experimental and Clinical Biomedical Sciences, University of Florence, viale GB Morgagni 50, Florence 50134, Italy.

Metabolic rearrangements are essential to satisfy the different requirements of cancer cells during tumorigenesis and recent studies have highlighted a role for such metabolic reprogramming in response and adaptation to therapies. However, therapy-resistant experimental models have been described to be either glycolysis-dependent or OXPHOS-addicted. Here we discuss the recent literature on metabolic reprogramming of cancer in therapy resistance with a plausible explanation of the observed differences which collectively indicate that dis-regulated metabolic pathways could be considered potential therapeutic targets in tumors resistant to conventional therapy.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D053858 Metabolic Networks and Pathways Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites. Metabolic Networks,Metabolic Pathways,Metabolic Network,Metabolic Pathway,Network, Metabolic,Networks, Metabolic,Pathway, Metabolic,Pathways, Metabolic
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug
D065150 Cellular Reprogramming A process where fully differentiated or specialized cells revert to pluripotency or a less differentiated cell type. Cell Reprogramming,Nuclear Reprogramming,Reprogramming, Cell,Reprogramming, Cellular,Reprogramming, Nuclear

Related Publications

Andrea Morandi, and Stefano Indraccolo
July 2021, Cancers,
Andrea Morandi, and Stefano Indraccolo
July 2021, Cells,
Andrea Morandi, and Stefano Indraccolo
February 2021, Cancers,
Andrea Morandi, and Stefano Indraccolo
February 2017, Stem cells translational medicine,
Andrea Morandi, and Stefano Indraccolo
January 2022, Frontiers in oncology,
Andrea Morandi, and Stefano Indraccolo
November 2010, Oncogene,
Andrea Morandi, and Stefano Indraccolo
January 2023, Frontiers in oncology,
Andrea Morandi, and Stefano Indraccolo
February 2023, Cell & bioscience,
Copied contents to your clipboard!