Reuse and Biocompatibility of Hemodialysis Membranes: Clinically Relevant? 2017

Ashish Upadhyay, and Bertrand L Jaber
Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts.

The practice of reprocessing dialyzers for reuse, once predominant in the United States, has been steadily declining over the last 20 years. The professed roles of reuse in improving dialyzer membrane biocompatibility and lowering the risk of first-use syndrome have lost relevance with the advent of biocompatible dialyzer membranes and favorable sterilization techniques. The potential for cost-savings from reuse is also called into question by the easy availability of comparatively cheaper dialyzers and rising regulatory demands and operational cost of reprocessing systems. While the environmental concerns from additional dialyzer-related solid waste from rising single-use practice remains pertinent and requires development of safer dialyzer disposable system technologies, there is no meaningful medical rationale for the continued practice of dialyzer reuse in the twenty-first century.

UI MeSH Term Description Entries
D007676 Kidney Failure, Chronic The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION. ESRD,End-Stage Renal Disease,Renal Disease, End-Stage,Renal Failure, Chronic,Renal Failure, End-Stage,Chronic Kidney Failure,End-Stage Kidney Disease,Chronic Renal Failure,Disease, End-Stage Kidney,Disease, End-Stage Renal,End Stage Kidney Disease,End Stage Renal Disease,End-Stage Renal Failure,Kidney Disease, End-Stage,Renal Disease, End Stage,Renal Failure, End Stage
D007688 Kidneys, Artificial Devices which can substitute for normally functioning KIDNEYS in removing components from the blood by DIALYSIS that are normally eliminated in the URINE. Artificial Kidney,Kidney, Artificial,Artificial Kidneys,Blood Dialyser,Blood Dialyzers,Hemodialyser,Hemodialyzers,Renal Dialysis Machine,Blood Dialysers,Blood Dialyzer,Dialyser, Blood,Dialysers, Blood,Dialysis Machine, Renal,Dialysis Machines, Renal,Dialyzer, Blood,Dialyzers, Blood,Hemodialysers,Hemodialyzer,Machine, Renal Dialysis,Machines, Renal Dialysis,Renal Dialysis Machines
D008297 Male Males
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D004869 Equipment Safety Freedom of equipment from actual or potential hazards. Device Safety,Hazards, Equipment,Medical Device Safety,Safety, Equipment,Device Safety, Medical,Safety, Medical Device,Equipment Hazard,Equipment Hazards,Hazard, Equipment,Safety, Device
D005260 Female Females
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D006435 Renal Dialysis Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION. Dialysis, Extracorporeal,Dialysis, Renal,Extracorporeal Dialysis,Hemodialysis,Dialyses, Extracorporeal,Dialyses, Renal,Extracorporeal Dialyses,Hemodialyses,Renal Dialyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible

Related Publications

Ashish Upadhyay, and Bertrand L Jaber
August 1990, Journal of the American Society of Nephrology : JASN,
Ashish Upadhyay, and Bertrand L Jaber
January 1987, Blood purification,
Ashish Upadhyay, and Bertrand L Jaber
August 1987, Veterinary and human toxicology,
Ashish Upadhyay, and Bertrand L Jaber
January 2002, Journal of the American Society of Nephrology : JASN,
Ashish Upadhyay, and Bertrand L Jaber
January 1991, Advances in nephrology from the Necker Hospital,
Ashish Upadhyay, and Bertrand L Jaber
March 1986, The International journal of artificial organs,
Ashish Upadhyay, and Bertrand L Jaber
January 1994, Blood purification,
Ashish Upadhyay, and Bertrand L Jaber
April 2022, Biomedicines,
Ashish Upadhyay, and Bertrand L Jaber
February 1993, The Journal of laboratory and clinical medicine,
Ashish Upadhyay, and Bertrand L Jaber
January 2004, ASAIO journal (American Society for Artificial Internal Organs : 1992),
Copied contents to your clipboard!