Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. 2017

Changjiang Fan, and Dong-An Wang
1 Institute for Translational Medicine, College of Medicine, Qingdao University , Qingdao, People's Republic of China .

Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016062 Porosity Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance. Porosities
D054457 Tissue Scaffolds Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses. Tissue Scaffolding,Scaffold, Tissue,Scaffolding, Tissue,Scaffoldings, Tissue,Scaffolds, Tissue,Tissue Scaffold,Tissue Scaffoldings
D062028 Bioprinting A material transfer technique used for assembling biological material or cells into a prescribed organization to create functional structures such as MICROCHIP ANALYTICAL DEVICES, cell microarrays, or three dimensional anatomical structures. 3D Bioprinting,Three-Dimensional Bioprinting,3D Bioprintings,Bioprinting, 3D,Bioprinting, Three-Dimensional,Three Dimensional Bioprinting,Three-Dimensional Bioprintings
D018929 Cell Culture Techniques Methods for maintaining or growing CELLS in vitro. Cell Culture,Cell Culture Technique,Cell Cultures,Culture Technique, Cell,Culture Techniques, Cell
D020136 Hydrogel, Polyethylene Glycol Dimethacrylate A network of cross-linked hydrophilic macromolecules used in biomedical applications fabricated by photopolymerization of polyethylene glycol dimethacrylate. Its general formulae is C3H5C(O)(OCH2CH2)nOC(O)C3H5 where n denotes a number of average polyglycol (OCH2CH2) repeats. PEG-DMA Hydrogel,PEGDMA Hydrogel,Polyethylene Glycol Dimethacrylate Hydrogel,Hydrogel, PEG-DMA,Hydrogel, PEGDMA,PEG DMA Hydrogel,PEG-DMA Hydrogels,PEGDMA Hydrogels
D023822 Tissue Engineering Generating tissue in vitro for clinical applications, such as replacing wounded tissues or impaired organs. The use of TISSUE SCAFFOLDING enables the generation of complex multi-layered tissues and tissue structures. Engineering, Tissue

Related Publications

Changjiang Fan, and Dong-An Wang
January 2017, Journal of biomedical materials research. Part A,
Changjiang Fan, and Dong-An Wang
October 2010, Tissue engineering. Part C, Methods,
Changjiang Fan, and Dong-An Wang
June 2023, Bioengineering (Basel, Switzerland),
Changjiang Fan, and Dong-An Wang
August 2017, ACS biomaterials science & engineering,
Changjiang Fan, and Dong-An Wang
July 2023, Tissue engineering and regenerative medicine,
Changjiang Fan, and Dong-An Wang
November 2017, The British journal of oral & maxillofacial surgery,
Changjiang Fan, and Dong-An Wang
September 2010, Biofabrication,
Changjiang Fan, and Dong-An Wang
November 2016, Journal of biomedical materials research. Part A,
Changjiang Fan, and Dong-An Wang
January 2011, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!