Effects of mutations on enzyme activity and immunoreactivity of the S1 subunit of pertussis toxin. 1989

Y Lobet, and W Cieplak, and S G Smith, and J M Keith
Laboratory of Pathobiology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840.

By introducing a series of six different substitutions at and around position 9, we investigated the structural requirements of the amino-terminal region of the S1 subunit of pertussis toxin for both enzyme activity and immunoreactivity. All mutant S1 analogs with a substitution at this location exhibited severely decreased ADP-ribosyltransferase activity (range, 400- to 2,500-fold). In contrast, alteration of arginine 58 had considerably less effect. The reactivity of the mutant molecules with monoclonal antibody 1B7 varied with the nature of the substitution. These findings indicate an absolute requirement for the presence of an arginine residue at position 9 for the maintenance of efficient ADP-ribosyltransferase activity and illustrate the specific participation of vicinal residues in the formation of the protective epitope.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015293 Transducin A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. G-Protein, Inhibitory Gt,Gt, Transducin G-Protein,alpha-Transducin,beta-Transducin,gamma-Transducin,Transducin G-Protein (Gt),Transducin, alpha Subunit,Transducin, beta Subunit,Transducin, gamma Subunit,G Protein, Inhibitory Gt,G-Protein Gt, Transducin,Gt G-Protein, Inhibitory,Gt, Transducin G Protein,Inhibitory Gt G-Protein,Transducin G-Protein Gt,alpha Subunit Transducin,alpha Transducin,beta Subunit Transducin,beta Transducin,gamma Subunit Transducin,gamma Transducin

Related Publications

Y Lobet, and W Cieplak, and S G Smith, and J M Keith
March 2000, Infection and immunity,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
February 1994, Biochemistry,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
February 1986, Journal of general microbiology,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
October 1990, The Journal of biological chemistry,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
March 2002, Infection and immunity,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
January 2001, Cellular microbiology,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
May 1990, Journal of immunology (Baltimore, Md. : 1950),
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
March 1989, Infection and immunity,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
October 1988, Proceedings of the National Academy of Sciences of the United States of America,
Y Lobet, and W Cieplak, and S G Smith, and J M Keith
October 1988, Science (New York, N.Y.),
Copied contents to your clipboard!