Conformation and complexation with metal ions of cyclic hexapeptides: cyclo (L-Leu-L-Phe-L-Pro)2 and cyclo [L-Cys(Acm)-L-Phe-L-Pro]2. 1989

E Ozeki, and S Kimura, and Y Imanishi
Department of Polymer Chemistry, Kyoto University, Japan.

Cyclic hexapeptides, cyclo (L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2, in which Acm represents an acetoamide-methyl group, were synthesized, and the conformation and complexation with metal ions were investigated. Cooperation of the carbonyl groups of the Cys(Acm) side chains with those of the cyclic skeleton in complexation was especially examined. Cyclo(L-Leu-L-Phe-L-Pro)2, which possesses no functional groups on side chains, was taken as the reference compound. 13C- and two-dimensional n.m.r. measurements revealed that cyclo(L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 took a C2-symmetric conformation containing cis L-Phe-L-Pro bonds in chloroform and acetonitrile. Both cyclic hexapeptides were found to complex selectively with Ba2+ and Ca2+ in acetonitrile. On complexation the conformation of either cyclic hexapeptide changed into a similar one. However, the binding constant of cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 was higher than that of cyclo(L-Leu-L-Phe-L-Pro)2. The n.m.r. measurements showed that the amide carbonyl groups of Cys(Acm) side chains as well as those of cyclic skeleton in cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 cooperatively bound the cations.

UI MeSH Term Description Entries
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

E Ozeki, and S Kimura, and Y Imanishi
June 1998, The journal of peptide research : official journal of the American Peptide Society,
E Ozeki, and S Kimura, and Y Imanishi
April 1974, Journal of the American Chemical Society,
E Ozeki, and S Kimura, and Y Imanishi
September 1973, Journal of the American Chemical Society,
E Ozeki, and S Kimura, and Y Imanishi
March 2001, Chemistry (Weinheim an der Bergstrasse, Germany),
E Ozeki, and S Kimura, and Y Imanishi
November 1976, Journal of the American Chemical Society,
E Ozeki, and S Kimura, and Y Imanishi
March 1983, International journal of peptide and protein research,
E Ozeki, and S Kimura, and Y Imanishi
January 1984, International journal of peptide and protein research,
Copied contents to your clipboard!