Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. 2017

Roberto Motterlini, and Roberta Foresti
Inserm U955, Team 12, Créteil, France; and Faculty of Medicine, Université Paris Est, Créteil, France.

Carbon monoxide (CO) is continuously produced in mammalian cells during the degradation of heme. It is a stable gaseous molecule that reacts selectively with transition metals in a specific redox state, and these characteristics restrict the interaction of CO with defined biological targets that transduce its signaling activity. Because of the high affinity of CO for ferrous heme, these targets can be grouped into heme-containing proteins, representing a large variety of sensors and enzymes with a series of diverse function in the cell and the organism. Despite this notion, progress in identifying which of these targets are selective for CO has been slow and even the significance of elevated carbonmonoxy hemoglobin, a classical marker used to diagnose CO poisoning, is not well understood. This is also due to the lack of technologies capable of assessing in a comprehensive fashion the distribution and local levels of CO between the blood circulation, the tissue, and the mitochondria, one of the cellular compartments where CO exerts its signaling or detrimental effects. Nevertheless, the use of CO gas and CO-releasing molecules as pharmacological approaches in models of disease has provided new important information about the signaling properties of CO. In this review we will analyze the most salient effects of CO in biology and discuss how the binding of CO with key ferrous hemoproteins serves as a posttranslational modification that regulates important processes as diverse as aerobic metabolism, oxidative stress, and mitochondrial bioenergetics.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Roberto Motterlini, and Roberta Foresti
October 2017, Organic & biomolecular chemistry,
Roberto Motterlini, and Roberta Foresti
December 2022, Topics in current chemistry (Cham),
Roberto Motterlini, and Roberta Foresti
July 2022, Chemistry (Weinheim an der Bergstrasse, Germany),
Roberto Motterlini, and Roberta Foresti
November 2011, Arteriosclerosis, thrombosis, and vascular biology,
Roberto Motterlini, and Roberta Foresti
September 2012, Arteriosclerosis, thrombosis, and vascular biology,
Roberto Motterlini, and Roberta Foresti
April 2007, British journal of pharmacology,
Roberto Motterlini, and Roberta Foresti
September 2017, American journal of hypertension,
Roberto Motterlini, and Roberta Foresti
October 2020, Accounts of chemical research,
Roberto Motterlini, and Roberta Foresti
April 2013, American journal of physiology. Endocrinology and metabolism,
Roberto Motterlini, and Roberta Foresti
July 2011, The Journal of biological chemistry,
Copied contents to your clipboard!