Changes in ribosomal proteins in developing Artemia salina embryos. 1989

N Kenmochi, and Y Takahashi, and K Ogata
Department of Biochemistry, Niigata University School of Medicine.

Ribosomal proteins from cysts and nauplii of Artemia salina were analyzed by three kinds of two-dimensional polyacrylamide gel electrophoresis. The basic-acidic and basic-SDS gel systems were used to compare the basic ribosomal proteins, and some changes were observed between the cysts and nauplii in proteins S6, S14, and L24. The phosphorylation of protein S6 was increased in the nauplii. Basic proteins S14 and L24 in the cysts changed and none of the corresponding proteins in the nauplii were detected at the same positions on two-dimensional gels as in the cysts. The acidic-SDS gel system was used to compare the acidic proteins in ribosomes and it was revealed that an acidic protein, AX (Mr = 24,000), in the cysts was not present in the ribosomes from the nauplii. The ribosomal activities as to the formation of an 80S initiation complex with globin mRNA and poly(U)-directed polyphenylalanine synthesis were compared. There was no significant difference between the cyst and nauplius ribosomes.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D010441 Peptide Chain Elongation, Translational A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES. Chain Elongation, Peptide, Translational,Protein Biosynthesis Elongation,Protein Chain Elongation, Translational,Protein Translation Elongation,Translation Elongation, Genetic,Translation Elongation, Protein,Translational Elongation, Protein,Translational Peptide Chain Elongation,Biosynthesis Elongation, Protein,Elongation, Genetic Translation,Elongation, Protein Biosynthesis,Elongation, Protein Translation,Elongation, Protein Translational,Genetic Translation Elongation,Protein Translational Elongation
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001156 Artemia A genus of CRUSTACEA of the order ANOSTRACA, found in briny pools and lakes and often cultured for fish food. It has 168 chromosomes and differs from most crustaceans in that its blood contains hemoglobin. Brine Shrimp,Shrimp, Brine,Artemias,Brine Shrimps,Shrimps, Brine
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal

Related Publications

N Kenmochi, and Y Takahashi, and K Ogata
October 1981, Biochimica et biophysica acta,
N Kenmochi, and Y Takahashi, and K Ogata
March 1976, Biochemical and biophysical research communications,
N Kenmochi, and Y Takahashi, and K Ogata
December 1980, Biochemical Society transactions,
N Kenmochi, and Y Takahashi, and K Ogata
December 1975, Archives internationales de physiologie et de biochimie,
N Kenmochi, and Y Takahashi, and K Ogata
December 1975, Archives internationales de physiologie et de biochimie,
N Kenmochi, and Y Takahashi, and K Ogata
March 1977, Nucleic acids research,
N Kenmochi, and Y Takahashi, and K Ogata
June 1968, Developmental biology,
N Kenmochi, and Y Takahashi, and K Ogata
January 1998, European journal of biochemistry,
Copied contents to your clipboard!