Mapping of three major heparin-binding sites on laminin and identification of a novel heparin-binding site on the B1 chain. 1989

K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis 55455.

Laminin, a major basement membrane glycoprotein, interacts with many basement membrane- and cell surface-associated heparin-like macromolecules. In order to understand these interactions better, we have tried to map heparin-binding sites on laminin precisely. Electron microscopy revealed three major heparin-binding sites: 1) on the globule of the long arm; 2) on the outer globule of the short arms; and 3) on the inner globule of the short arms. Elution of heparin bound to a laminin affinity column with a linear salt gradient produced three peaks at 0.15, 0.17, and 0.20 M NaCl. When the laminin-heparin interaction was examined in the presence of increasing salt concentrations by the technique of rotary shadowing, the weakest binding was assigned to the inner globule of the short arms and the strongest to the globule of the long arm. One peptide termed AC15, with the sequence Arg-Ile-Gln-Asn-Leu-Leu-Lys-Ile-Thr-Asn-Leu-Arg-Ile-Lys-Phe-Val-Lys from the B1 chain, was identified as a heparin-binding sequence localized on the outer globule of the lateral short arm. Because the two stronger heparin-binding sites were mapped in domains participating in laminin self-association, the effect of heparin on this phenomenon was examined using turbidity and electron microscopy. At low heparin concentrations, laminin oligomer and polymer formation was slightly enhanced. At high heparin concentrations, a drastic inhibition of polymerization was observed, and laminin was detected to be mainly monomeric in rotary-shadowed samples. These results suggest that local variation in the concentration of heparin-like macromolecules might be a crucial factor in determining the association of matrix macromolecules and therefore the structure of basement membranes.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
May 2000, The Journal of biological chemistry,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
April 1999, Circulation research,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
April 1999, Journal of cellular physiology,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
January 2001, The Journal of biological chemistry,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
July 2002, Experimental cell research,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
January 2011, Journal of molecular biology,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
October 1992, The Journal of biological chemistry,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
July 1992, Journal of neurochemistry,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
November 1991, European journal of biochemistry,
K Kouzi-Koliakos, and G G Koliakos, and E C Tsilibary, and L T Furcht, and A S Charonis
April 1995, The Journal of biological chemistry,
Copied contents to your clipboard!