Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. 1989

M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
Laboratory of Experimental Radiology, Aichi Cancer Center Research Institute, Japan.

Peptidylarginine deiminase (proteinarginine iminohydrolase, EC 3.5.3.15) converted some arginine residues to citrulline residues in soluble vimentin, in a micromolar Ca2+-dependent manner and resulted in the loss of polymerization competence of the intermediate filament protein. When about 8 mol of residues/mol of vimentin were deiminated, there was a complete loss of filament forming ability. This enzyme also deiminated vimentin filaments which had been polymerized, and deimination of vimentin filaments resulted in filament disassembly. Similar results were obtained with other intermediate filaments such as desmin and glial filaments. High performance liquid chromatography and amino acid analyses of lysine-specific protease-generated fragments from deiminated vimentin (about 8 mol of citrulline/mol of vimentin) showed a differential deimination of three structural domains. The head domain was predominant. These observations suggest that the head domain strongly influences integrity of the intermediate filament.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
April 2003, Molecular biology of the cell,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
September 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
February 2000, Journal of cell science,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
June 1989, Cell structure and function,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
October 1988, Seikagaku. The Journal of Japanese Biochemical Society,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
August 1995, Biochemical and biophysical research communications,
M Inagaki, and H Takahara, and Y Nishi, and K Sugawara, and C Sato
June 2001, The Journal of biological chemistry,
Copied contents to your clipboard!