Accelerated rates of ribosomal RNA synthesis during growth of contracting heart cells in culture. 1989

P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822.

Contractile activity of neonatal cardiac myocytes stimulated hypertrophic growth as compared with nonbeating cells that were depolarized with 50 mM KCl. Growth of contracting myocytes was associated with an increased rRNA content as measured by the total RNA/DNA ratio. The fractional rates of rRNA synthesis (K8) and rRNA degradation were determined in contracting and nonbeating myocytes to assess their relative contributions in increasing rRNA content during growth. The values for K8 were calculated from the specific radioactivity of 3'-[3H]UMP in 18 and 28 S rRNA after purification by hybridization to cloned rDNA. The cellular [3H]UTP pool served as the precursor for rRNA synthesis in myocytes that were labeled with 50 microM [3H]uridine. K8 values for 18 and 28 S rRNA in contracting myocytes were accelerated by 59 and 53%, respectively, after 3 days as compared with nonbeating myocytes. Calculations of the rate of cellular rRNA synthesis, which took into account the increased content of myocyte rRNA, revealed that synthesis of both 18 and 28 S rRNA was accelerated 2-fold after 2 days of contraction. The derived values for degradation of 18 and 28 S rRNA were increased marginally in contracting myocytes, but cellular rRNA degradation rates averaged 57% higher. The difference between cellular rates of rRNA synthesis and degradation in contracting myocytes accounted for the 30% increase in rRNA content. These data demonstrated that increased rRNA content in contracting myocytes resulted from acceleration of the fractional rate of rRNA synthesis.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
March 1991, The Journal of biological chemistry,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
January 1991, Molecular and cellular biochemistry,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
July 1973, Experimental cell research,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
July 2002, Journal of molecular evolution,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
January 1976, Development, growth & differentiation,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
October 1966, Experimental cell research,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
January 1973, Developmental biology,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
January 1971, Biochimica et biophysica acta,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
January 1973, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
P J McDermott, and L I Rothblum, and S D Smith, and H E Morgan
August 1977, Experimental cell research,
Copied contents to your clipboard!