Identification of the Catalytic Residue of Rat Acyl-CoA Dehydrogenase 9 by Site-Directed Mutagenesis. 2017

Jia Zeng, and Senwen Deng, and Yiping Wang
School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, People's Republic of China. zengj@hnu.edu.cn.

Acyl-CoA dehydrogenase 9 (ACAD 9) is the ninth member of ACADs involved in mitochondrial fatty acid oxidation and possibly complex I assembly. Sequence alignment suggested that Glu389 of rat ACAD 9 was highly conserved and located near the active center and might act as an important base for the dehydrogenation reaction. The role of Glu389 in the catalytic reaction was investigated by site-directed mutagenesis. Both wild-type and mutant ACAD 9 proteins were purified and their catalytic characterization was studied. When Glu389 was replaced by other residues, the enzyme activity could be lost to a large extent. Those results suggested that Glu389 could function as the catalytic base that abstracted the α-proton of the acyl-CoA substrate in a proposed catalytic mechanism.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D044944 Acyl-CoA Dehydrogenases Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS. Acyl CoA Dehydrogenases,Dehydrogenases, Acyl-CoA
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019943 Amino Acid Substitution The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid
D020125 Mutation, Missense A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed) Missense Mutation,Missense Mutations,Mutations, Missense
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic

Related Publications

Jia Zeng, and Senwen Deng, and Yiping Wang
January 1998, Biochimica et biophysica acta,
Jia Zeng, and Senwen Deng, and Yiping Wang
August 1995, Biochemistry,
Jia Zeng, and Senwen Deng, and Yiping Wang
November 1991, The Journal of biological chemistry,
Jia Zeng, and Senwen Deng, and Yiping Wang
January 1999, The Journal of biological chemistry,
Jia Zeng, and Senwen Deng, and Yiping Wang
April 1994, Biochemistry,
Jia Zeng, and Senwen Deng, and Yiping Wang
May 2006, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!