Translation initiation mediated by nuclear cap-binding protein complex. 2017

Incheol Ryu, and Yoon Ki Kim

In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

UI MeSH Term Description Entries
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D059365 Nonsense Mediated mRNA Decay An mRNA metabolic process that distinguishes a normal STOP CODON from a premature stop codon (NONSENSE CODON) and facilitates rapid degradation of aberrant mRNAs containing premature stop codons. Nonsense-Mediated mRNA Decay,Decay, Nonsense-Mediated mRNA,mRNA Decay, Nonsense-Mediated
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D039502 Nuclear Cap-Binding Protein Complex A heterodimeric protein complex of RNA cap-binding proteins, which binds with high affinity to the 5' MRNA CAP STRUCTURE in the CELL NUCLEUS. The complex contains two subunits, one of 80-kDa molecular weight and another of 20-kDa molecular weight. Cap-Binding Protein Complex, Nuclear,Nuclear Cap Binding Protein Subunit 1, 80-kDa,CAF20 Gene Product,CBP20 Protein,CBP80 Protein,Cap-Binding Complex 80-kDa protein,NCBP1 Protein,NCBP2 Protein,Nuclear Cap Binding Protein Subunit 2, 20-kDa,Nuclear Cap Binding Protein, 80-kDa,Cap Binding Complex 80 kDa protein,Cap Binding Protein Complex, Nuclear,Nuclear Cap Binding Protein Complex,Nuclear Cap Binding Protein Subunit 1, 80 kDa,Nuclear Cap Binding Protein Subunit 2, 20 kDa,Nuclear Cap Binding Protein, 80 kDa
D039642 Eukaryotic Initiation Factors Peptide initiation factors from eukaryotic organisms. Over twelve factors are involved in PEPTIDE CHAIN INITIATION, TRANSLATIONAL in eukaryotic cells. Many of these factors play a role in controlling the rate of MRNA TRANSLATION. Peptide Initiation Factors, Eukaryotic,Translation Initiation Factors, Eukaryotic,Eukaryotic Peptide Initiation Factors,Initiation Factors, Eukaryotic

Related Publications

Incheol Ryu, and Yoon Ki Kim
March 2005, Proceedings of the National Academy of Sciences of the United States of America,
Incheol Ryu, and Yoon Ki Kim
September 2007, Science (New York, N.Y.),
Incheol Ryu, and Yoon Ki Kim
January 1995, Cold Spring Harbor symposia on quantitative biology,
Incheol Ryu, and Yoon Ki Kim
December 2007, Biochemical Society transactions,
Copied contents to your clipboard!