Theoretical predication of temperature effects on accommodative processes in simulated amyotrophic lateral sclerosis during hypothermia and hyperthermia. 2016

D I Stephanova, and A Kossev
1 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl 21, Sofia 1113, Bulgaria.

Electrotonic potentials allow the accommodative processes to long-lasting subthreshold polarizing stimuli to be assessed. The present study investigates such potentials in previously simulated cases of amyotrophic lateral sclerosis, termed as ALS1, ALS2 and ALS3, respectively, when the temperature is changed during hypothermia ([Formula: see text]C) and hyperthermia ([Formula: see text]C). The ALS cases are modeled as three progressively severe uniform axonal dysfunctions along the human motor nerve fiber which is simulated by our temperature-dependent multi-layered numerical model. The results show that the polarizing electrotonic potentials in the ALS1 case are quite similar to those in the normal case during hypothermia. Their defining currents are caused by the activation of potassium fast (K[Formula: see text]) and slow (K[Formula: see text]) channels in the nodal and internodal axolemma beneath the myelin sheath. Except in the ALS3 case at 20[Formula: see text]C, where the accommodative processes are blocked by depolarizing stimuli, in the ALS2 and ALS3 cases during hypothermia these stimuli activate the classical "transient" Na[Formula: see text] channels in the nodal and internodal axolemma beneath the myelin sheath. And this leads to action potential generations during the early parts of electrotonic responses in all compartments along the fiber length. Only in the ALS3 case after the termination of long-lasting subthreshold hyperpolarizing stimuli, action potential generations are obtained in the late parts of electrotonic potentials along the fiber length. In comparison to the normal case, in the gradually severe ALS cases, the depolarizing electrotonic potentials gradually increase, while the hyperpolarizing electrotonic potentials gradually decrease during hyperthermia. However, the repetitive firings are not obtained in these polarizing electrotonic potentials. The results show that the accommodative processes to depolarizing stimuli in the ALS3 case are more likely to be blocked during hypothermia than hyperthermia. The results also show that the polarizing electrotonic potentials in the three simulated ALS cases are specific indicators for the motor nerve disease ALS during hypothermia and hyperthermia.

UI MeSH Term Description Entries
D007035 Hypothermia Lower than normal body temperature, especially in warm-blooded animals. Hypothermia, Accidental,Accidental Hypothermia,Accidental Hypothermias,Hypothermias,Hypothermias, Accidental
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005334 Fever An abnormal elevation of body temperature, usually as a result of a pathologic process. Pyrexia,Fevers,Pyrexias
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000690 Amyotrophic Lateral Sclerosis A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94) ALS - Amyotrophic Lateral Sclerosis,Lou Gehrig Disease,Motor Neuron Disease, Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis With Dementia,Amyotrophic Lateral Sclerosis, Guam Form,Amyotrophic Lateral Sclerosis, Parkinsonism-Dementia Complex of Guam,Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex 1,Charcot Disease,Dementia With Amyotrophic Lateral Sclerosis,Gehrig's Disease,Guam Disease,Guam Form of Amyotrophic Lateral Sclerosis,Lou Gehrig's Disease,Lou-Gehrigs Disease,ALS Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis Parkinsonism Dementia Complex 1,Amyotrophic Lateral Sclerosis, Parkinsonism Dementia Complex of Guam,Disease, Guam,Disease, Lou-Gehrigs,Gehrig Disease,Gehrigs Disease,Sclerosis, Amyotrophic Lateral
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

D I Stephanova, and A Kossev
October 2002, Muscle & nerve,
D I Stephanova, and A Kossev
August 2011, Journal of neurology, neurosurgery, and psychiatry,
D I Stephanova, and A Kossev
November 1992, Journal of biomechanical engineering,
D I Stephanova, and A Kossev
May 2020, Journal of functional morphology and kinesiology,
D I Stephanova, and A Kossev
February 2022, Scientific reports,
D I Stephanova, and A Kossev
October 1969, Wiadomosci lekarskie (Warsaw, Poland : 1960),
D I Stephanova, and A Kossev
July 1959, Ceskoslovenska neurologie,
D I Stephanova, and A Kossev
December 2010, Gender medicine,
D I Stephanova, and A Kossev
January 1995, Romanian journal of neurology and psychiatry = Revue roumaine de neurologie et psychiatrie,
D I Stephanova, and A Kossev
March 1998, Anesthesia and analgesia,
Copied contents to your clipboard!