Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies. 2017

Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.

A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs) play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR) T-cell therapy and engineered T-cell receptor (TCR) T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1) provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2) provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3) evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

UI MeSH Term Description Entries
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D016219 Immunotherapy, Adoptive Form of adoptive transfer where cells with antitumor activity are transferred to the tumor-bearing host in order to mediate tumor regression. The lymphoid cells commonly used are lymphokine-activated killer (LAK) cells and tumor-infiltrating lymphocytes (TIL). This is usually considered a form of passive immunotherapy. (From DeVita, et al., Cancer, 1993, pp.305-7, 314) Adoptive Cellular Immunotherapy,Adoptive Immunotherapy,CAR T-Cell Therapy,Cellular Immunotherapy, Adoptive,Chimeric Antigen Receptor Therapy,Immunotherapy, Adoptive Cellular,Adoptive Cellular Immunotherapies,Adoptive Immunotherapies,CAR T Cell Therapy,CAR T-Cell Therapies,Cellular Immunotherapies, Adoptive,Immunotherapies, Adoptive,Immunotherapies, Adoptive Cellular,T-Cell Therapies, CAR,T-Cell Therapy, CAR,Therapies, CAR T-Cell,Therapy, CAR T-Cell
D019139 Tumor Escape The ability of tumors to evade destruction by the IMMUNE SYSTEM. Theories concerning possible mechanisms by which this takes place involve both cellular immunity (IMMUNITY, CELLULAR) and humoral immunity (ANTIBODY FORMATION), and also costimulatory pathways related to CD28 ANTIGENS and B7-1 ANTIGEN. Immune Escape, Tumor,Immune Evasion, Tumor,Tumor Immune Evasion,Evasion, Tumor Immune,Evasions, Tumor Immune,Immune Evasions, Tumor,Tumor Immune Escape,Tumor Immune Evasions
D019337 Hematologic Neoplasms Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES. Blood Cancer,Hematologic Malignancies,Hematopoietic Neoplasms,Hematologic Malignancy,Hematological Malignancies,Hematological Neoplasms,Hematopoietic Malignancies,Malignancies, Hematologic,Malignancy, Hematologic,Neoplasms, Hematologic,Neoplasms, Hematopoietic,Blood Cancers,Cancer, Blood,Hematologic Neoplasm,Hematological Malignancy,Hematological Neoplasm,Hematopoietic Malignancy,Hematopoietic Neoplasm,Malignancy, Hematological,Malignancy, Hematopoietic,Neoplasm, Hematologic,Neoplasm, Hematological,Neoplasm, Hematopoietic

Related Publications

Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
December 2014, Pharmaceuticals (Basel, Switzerland),
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
August 2017, Cell biology and toxicology,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
July 2019, Biochemistry. Biokhimiia,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
January 2021, BioMed research international,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
July 2011, Cellular and molecular life sciences : CMLS,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
October 2019, Journal of clinical medicine,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
January 2014, Immunological reviews,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
February 2014, International journal of hematology,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
October 2017, Hematology/oncology clinics of North America,
Baixin Ye, and Creed M Stary, and Qingping Gao, and Qiongyu Wang, and Zhi Zeng, and Zhihong Jian, and Lijuan Gu, and Xiaoxing Xiong
October 2002, Current opinion in molecular therapeutics,
Copied contents to your clipboard!