The effect of accelerated mineral trioxide aggregate on odontoblastic differentiation in dental pulp stem cell niches. 2018

P Kulan, and O Karabiyik, and G T Kose, and B Kargul
Department of Pediatric Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey.

OBJECTIVE To investigate the effect of accelerated-set mineral trioxide aggregate (MTA) on the proliferation and odontoblastic differentiation of human dental pulp cell niches (DPSC). METHODS ProRoot White MTA (WMTA; Dentsply Tulsa Dental, Johnson City, TN, USA) was mixed with various additives, which included distilled water, 2.5% disodium hydrogen phosphate (Na2 HPO4 ; Merck, Darmstadt, Germany) and 5% calcium chloride (CaCl2 ; Merck). DPSC niches extracted from third molars were cultured directly on MTA in the culture medium. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulphophenyl)-2H-tetrazolium (MTS) assay. Cell growth and expression of odontoblastic differentiation markers (dentine sialophosphoprotein (DSPP) and collagen type 1 (COL1)) were determined using Real-Time Polymerase Chain Reaction analysis. Osteo-/odontogenic differentiation of DPSC niches was evaluated by measurement of alkaline phosphatase activity (ALP). Calcium deposition was assessed using von Kossa staining. The results were analysed statistically using Mann-Whitney tests and Kruskal-Wallis tests. RESULTS MTA mixed with 5% CaCl2 and 2.5% Na2 HPO4 exhibited optimal cell viability (P < 0.05) compared to MTA mixed with distilled water. MTA mixed with 5% CaCl2 and 2.5% Na2 HPO4 significantly increased ALP activity (P < 0.05), significantly promoted mineralization nodule formation (P < 0.05) and significantly enhanced the mRNA expression level of the osteogenic/odontogenic markers (P < 0.05; DSPP and COL1) compared with MTA mixed with distilled water. CONCLUSIONS MTA mixed with 5% CaCl2 and 2.5% Na2 HPO4 was biocompatible with dental pulp stem cell niches. Accelerated-set MTA promoted better differentiation in DPSC niches than conventional MTA. The accelerators could provide an alternative to MTA mixed with distilled water.

UI MeSH Term Description Entries
D009804 Odontoblasts The mesenchymal cells which line the DENTAL PULP CAVITY and produce DENTIN. They have a columnar morphology in the coronal pulp but are cuboidal in the root pulp, or when adjacent to tertiary dentin. Odontoblast
D009805 Odontogenesis The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS). Odontogeneses
D010087 Oxides Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides. Oxide
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003782 Dental Pulp A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992) Dental Pulps,Pulp, Dental,Pulps, Dental
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D012387 Root Canal Filling Materials Materials placed inside a root canal for the purpose of obturating or sealing it. The materials may be gutta-percha, silver cones, paste mixtures, or other substances. (Dorland, 28th ed, p631 & Boucher's Clinical Dental Terminology, 4th ed, p187) Root Canal Filling Material,Root Canal Sealants,Sealants, Root Canal,Canal Sealant, Root,Canal Sealants, Root,Root Canal Sealant,Sealant, Root Canal

Related Publications

P Kulan, and O Karabiyik, and G T Kose, and B Kargul
February 2013, Journal of endodontics,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
May 2021, International endodontic journal,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
January 2007, International journal of immunopathology and pharmacology,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
September 2018, Open access Macedonian journal of medical sciences,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
September 2010, Acta histochemica,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
January 2022, Journal of oral biology and craniofacial research,
P Kulan, and O Karabiyik, and G T Kose, and B Kargul
June 2013, Journal of endodontics,
Copied contents to your clipboard!