Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus. 1989

M L Kemel, and M Desban, and J Glowinski, and C Gauchy
Laboratoire de Neuropharmacologie, Collège de France, Paris.

By use of a sensitive in vitro microsuperfusion method, the cholinergic prsynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [3H]dopamine continuously synthesized from [3H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [3H]dopamine were calcium-dependent in both compartments. With 10(-6) M tetrodotoxin, 5 x 10(-5) M acetylcholine stimulated [3H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine (10(-6) M), thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) In contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10(-6) M atropine completely abolished the cholinergic stimulatory effect on [3H]dopamine release in striosomal area, delayed and prolonged stimulation of [3H]dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine (10(-5) M). Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [3H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [3H]dopamine release mediated by muscarinic and nicotinic receptors, respectively.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D010393 Pempidine A nicotinic antagonist most commonly used as an experimental tool. It has been used as a ganglionic blocker in the treatment of hypertension but has largely been supplanted for that purpose by more specific drugs.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females

Related Publications

M L Kemel, and M Desban, and J Glowinski, and C Gauchy
January 1986, Journal de physiologie,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
January 1986, Clinical neuropharmacology,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
November 1980, Naunyn-Schmiedeberg's archives of pharmacology,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
January 1986, Annals of the New York Academy of Sciences,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
September 1971, Brain research,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
November 1994, Naunyn-Schmiedeberg's archives of pharmacology,
M L Kemel, and M Desban, and J Glowinski, and C Gauchy
January 1978, European journal of pharmacology,
Copied contents to your clipboard!