Estimating the initial relative infection rate for a stochastic epidemic model. 1989

P Yip
Department of Statistics, La Trobe University, Bundoora, Victoria, Australia.

Consider the problem of making inference about the initial relative infection rate of a stochastic epidemic model. A relatively complete analysis of infectious disease data is possible when it is assumed that the latent and infectious periods are non-random. Here two related martingale-based techniques are used to derive estimates and associated standard errors for the initial relative infection rate. The first technique requires complete information on the epidemic, the second only the total number of people who were infected and the population size. Explicit expressions for the estimates are obtained. The estimates of the parameter and its associated standard error are easily computed and compare well with results of other methods in an application to smallpox data. Asymptotic efficiency differences between the two martingale techniques are considered.

UI MeSH Term Description Entries
D009549 Nigeria A republic in western Africa, south of NIGER between BENIN and CAMEROON. Its capital is Abuja. Federal Republic of Nigeria
D011156 Population Density Number of individuals in a population relative to space. Overpopulation,Population Size,Underpopulation,Densities, Population,Density, Population,Population Densities,Population Sizes
D003141 Communicable Diseases An illness caused by an infectious agent or its toxins that occurs through the direct or indirect transmission of the infectious agent or its products from an infected individual or via an animal, vector or the inanimate environment to a susceptible animal or human host. Infectious Diseases,Communicable Disease,Disease, Communicable,Disease, Infectious,Diseases, Communicable,Diseases, Infectious,Infectious Disease
D004196 Disease Outbreaks Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS. Outbreaks,Infectious Disease Outbreaks,Disease Outbreak,Disease Outbreak, Infectious,Disease Outbreaks, Infectious,Infectious Disease Outbreak,Outbreak, Disease,Outbreak, Infectious Disease,Outbreaks, Disease,Outbreaks, Infectious Disease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012899 Smallpox An acute, highly contagious, often fatal infectious disease caused by an orthopoxvirus characterized by a biphasic febrile course and distinctive progressive skin eruptions. Vaccination has succeeded in eradicating smallpox worldwide. (Dorland, 28th ed) Alastrim,Variola,Variola Minor,Minor, Variola,Minors, Variola,Variola Minors,Variolas
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

P Yip
January 2014, Bulletin of mathematical biology,
P Yip
September 2020, Mathematical biosciences and engineering : MBE,
P Yip
December 2020, Journal of biological dynamics,
P Yip
February 1977, Theoretical population biology,
Copied contents to your clipboard!