Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. 1989

E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908.

The proteolytic activity of four hemorrhagic metalloproteinases (Ht-a, c, d, and e) isolated from the venom of the Western diamondback rattlesnake (Crotalus atrox) was investigated using isolated extracellular matrix (ECM) proteins. We determined that all of the proteinases are capable of cleaving fibronectin, laminin, type IV collagen, nidogen (entactin), and gelatins. However, none of the proteinases were proteolytic against the interstitial collagen types I and III or type V collagen. With all of the substrates listed above Ht-c and Ht-d produced identical digestion patterns, as would be expected for these isoenzymes. With fibronectin, Ht-a produces a different ratio of products from Ht-c and Ht-d, while Ht-e produces a unique pattern of digestion. Ht-e and Ht-a produced nonidentical patterns with the laminin/nidogen preparation although some similarity was shared between them as well as with the Ht-c/d digestion pattern. Similar results were also observed for these proteinases with nidogen 150 as the substrate. The type IV collagen digestion patterns by Ht-e and Ht-a were similar to the pattern observed with Ht-c/d but differed by two bands. The digestion patterns of the three gelatins produced by the proteinases show differences between Ht-c and Ht-d when compared to Ht-e and Ht-a. This investigation clearly shows that several of the ECM proteins are efficiently digested by these toxins. The proteinases have some digestion sites in common but show differing specificities. In addition, the range of ECM proteins digested by these hemorrhagic proteinases is nearly identical to that demonstrated by the ECM proteinase stromelysin (MMP-3). From these data, and the knowledge of the roles these ECM proteins have in maintaining basement membrane structural/functional integrity, one can envision that the degradation of these ECM proteins could readily lead to loss of capillary integrity resulting in hemorrhage occurring at those sites.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
November 2001, Seikagaku. The Journal of Japanese Biochemical Society,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
June 1999, Molecular neurobiology,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
February 2019, Cellular signalling,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
February 1992, Development (Cambridge, England),
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
January 2020, Journal of oral and maxillofacial pathology : JOMFP,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
January 1994, Acta neuropathologica,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
June 1996, The Journal of biological chemistry,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
January 2001, Journal of the American Society of Nephrology : JASN,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
May 2023, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
E N Baramova, and J D Shannon, and J B Bjarnason, and J W Fox
December 2008, Functional plant biology : FPB,
Copied contents to your clipboard!