RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. 2017

Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, Moscow, Russia.

The human DEAD-box RNA-helicase DDX19 functions in mRNA export through the nuclear pore complex. The yeast homolog of this protein, Dbp5, has been reported to participate in translation termination. Using a reconstituted mammalian in vitro translation system, we show that the human protein DDX19 is also important for translation termination. It is associated with the fraction of translating ribosomes. We show that DDX19 interacts with pre-termination complexes (preTCs) in a nucleotide-dependent manner. Furthermore, DDX19 increases the efficiency of termination complex (TC) formation and the peptide release in the presence of eukaryotic release factors. Using the eRF1(AGQ) mutant protein or a non-hydrolysable analog of GTP to inhibit subsequent peptidyl-tRNA hydrolysis, we reveal that the activation of translation termination by DDX19 occurs during the stop codon recognition. This activation is a result of DDX19 binding to preTC and a concomitant stabilization of terminating ribosomes. Moreover, we show that DDX19 stabilizes ribosome complexes with translation elongation factors eEF1 and eEF2. Taken together, our findings reveal that the human RNA helicase DDX19 actively participates in protein biosynthesis.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010441 Peptide Chain Elongation, Translational A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES. Chain Elongation, Peptide, Translational,Protein Biosynthesis Elongation,Protein Chain Elongation, Translational,Protein Translation Elongation,Translation Elongation, Genetic,Translation Elongation, Protein,Translational Elongation, Protein,Translational Peptide Chain Elongation,Biosynthesis Elongation, Protein,Elongation, Genetic Translation,Elongation, Protein Biosynthesis,Elongation, Protein Translation,Elongation, Protein Translational,Genetic Translation Elongation,Protein Translational Elongation
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D053487 DEAD-box RNA Helicases A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function. DEAD-box RNA Helicase,DEAD Box Helicase p68,p68 DEAD Box Protein,p68 RNA Helicase,DEAD box RNA Helicase,DEAD box RNA Helicases,Helicase, DEAD-box RNA,Helicase, p68 RNA,Helicases, DEAD-box RNA,RNA Helicase, DEAD-box,RNA Helicase, p68,RNA Helicases, DEAD-box
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D018388 Codon, Terminator Any codon that signals the termination of genetic translation (TRANSLATION, GENETIC). PEPTIDE TERMINATION FACTORS bind to the stop codon and trigger the hydrolysis of the aminoacyl bond connecting the completed polypeptide to the tRNA. Terminator codons do not specify amino acids. Amber Stop Codon,Codon, Amber Stop,Codon, Ochre Stop,Codon, Opal Stop,Codon, Stop,Stop Codon,Terminator Codon,Amber Codon,Amber Terminator Codon,Codon, Termination,Ochre Codon,Ochre Stop Codon,Opal Codon,Opal Stop Codon,Stop Codon UAA,Stop Codon UAG,Stop Codon UGA,Stop Signal, Translation,TAA Codon,TAG Codon,TGA Codon,UAA Codon,UAA Stop Codon,UAG Codon,UAG Stop Codon,UGA Codon,UGA Stop Codon,Amber Codons,Amber Stop Codons,Amber Terminator Codons,Codon UAA, Stop,Codon UAG, Stop,Codon UGA, Stop,Codon, Amber,Codon, Amber Terminator,Codon, Ochre,Codon, Opal,Codon, TAA,Codon, TAG,Codon, TGA,Codon, UAA,Codon, UAA Stop,Codon, UAG,Codon, UAG Stop,Codon, UGA,Codon, UGA Stop,Codons, Amber,Codons, Amber Stop,Codons, Amber Terminator,Codons, Ochre,Codons, Ochre Stop,Codons, Opal,Codons, Opal Stop,Codons, Stop,Codons, TAA,Codons, TAG,Codons, TGA,Codons, Termination,Codons, Terminator,Codons, UAA,Codons, UAA Stop,Codons, UAG,Codons, UAG Stop,Codons, UGA,Codons, UGA Stop,Ochre Codons,Ochre Stop Codons,Opal Codons,Opal Stop Codons,Stop Codon UGAs,Stop Codon, Amber,Stop Codon, Ochre,Stop Codon, Opal,Stop Codon, UAA,Stop Codon, UAG,Stop Codon, UGA,Stop Codons,Stop Codons, Amber,Stop Codons, Ochre,Stop Codons, Opal,Stop Codons, UAA,Stop Codons, UAG,Stop Codons, UGA,Stop Signals, Translation,TAA Codons,TAG Codons,TGA Codons,Termination Codon,Termination Codons,Terminator Codon, Amber,Terminator Codons,Terminator Codons, Amber,Translation Stop Signal,Translation Stop Signals,UAA Codons,UAA Stop Codons,UAA, Stop Codon,UAG Codons,UAG Stop Codons,UAG, Stop Codon,UGA Codons,UGA Stop Codons,UGA, Stop Codon

Related Publications

Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
July 2008, The Journal of biological chemistry,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
May 2017, The EMBO journal,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
April 2009, The Journal of biological chemistry,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
February 2015, Nature,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
October 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
June 1993, Molecular and cellular biology,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
September 2022, Cancer research,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
March 2012, Human molecular genetics,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
September 2016, Scientific reports,
Tatiana Mikhailova, and Ekaterina Shuvalova, and Alexander Ivanov, and Denis Susorov, and Alexey Shuvalov, and Peter M Kolosov, and Elena Alkalaeva
March 1987, Cell,
Copied contents to your clipboard!