Modulation of dipyridamole action by alpha 1 acid glycoprotein. Reduced potentiation of quinazoline antifolate (CB3717) cytotoxicity by dipyridamole. 1989

N J Curtin, and D R Newell, and A L Harris
Cancer Research Unit, University of Newcastle upon Tyne, Medical School, U.K.

Dipyridamole potentiates the cytotoxicity of N10-propargyl-5,8-dideazafolic acid (CB3717), an antifolate inhibitor of thymidylate synthase, by inhibiting both thymidine (TdR) salvage and deoxyuridine (UdR) efflux. Dipyridamole binds to the serum component alpha 1acid glycoprotein (alpha 1AGP) and hence the effects of alpha 1AGP on dipyridamole-induced changes in nucleoside transport and CB3717 cytotoxicity have been investigated. Using A549 lung cancer cells in vitro, alpha 1AGP reduced the inhibition of nucleoside transport by dipyridamole in a concentration-dependent manner. Between 10 and 200 times the concentration of dipyridamole was needed to inhibit TdR uptake to the same degree in medium containing 1 mg/ml alpha 1AGP (a physiological concentration) when compared to the uptake in alpha 1AGP-free medium. Although dipyridamole inhibited UdR efflux more than TdR efflux, inhibition of UdR efflux was reduced less than the inhibition of TdR efflux in the presence of 1 mg/ml alpha 1AGP. Thus, clinically achievable levels of dipyridamole (2.5-7.5 microM), even in the presence of physiological alpha 1AGP concentrations, caused significant inhibition of nucleotide uptake and efflux. The cytotoxicity of CB3717 was increased 2-3-fold by 3 and 10 microM dipyridamole in alpha 1AGP-free medium, whereas dipyridamole did not significantly (P greater than or equal to 0.05) potentiate CB3717 cytotoxicity in the presence of 1 mg/ml alpha 1AGP. Measured free dipyridamole levels indicated that the impaired inhibition of nucleoside transport and the lack of potentiation of CB3717 cytotoxicity in the presence of alpha 1AGP was due solely to the binding of dipyridamole to alpha 1AGP. It is concluded that alpha 1AGP levels will be a major determinant of the ability of dipyridamole to modulate the activity of antimetabolites in vivo.

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009961 Orosomucoid Acid Seromucoid,Seromucoid,Serum Sialomucin,alpha 1-Acid Glycoprotein,alpha 1-Acid Seromucoid,A(1)-Acid Seromucoid,Acid alpha 1-Glycoprotein,Alpha(1)-Acid Glycoprotein,alpha 1-Acid Glycoprotein (Acute Phase),alpha 1-Glycoprotein Acid,Acid alpha 1 Glycoprotein,Glycoprotein, alpha 1-Acid,Seromucoid, Acid,Seromucoid, alpha 1-Acid,Sialomucin, Serum,alpha 1 Acid Glycoprotein,alpha 1 Acid Seromucoid,alpha 1 Glycoprotein Acid
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004176 Dipyridamole A phosphodiesterase inhibitor that blocks uptake and metabolism of adenosine by erythrocytes and vascular endothelial cells. Dipyridamole also potentiates the antiaggregating action of prostacyclin. (From AMA Drug Evaluations Annual, 1994, p752) Antistenocardin,Apo-Dipyridamole,Cerebrovase,Cléridium,Curantil,Curantyl,Dipyramidole,Kurantil,Miosen,Novo-Dipiradol,Persantin,Persantine,Apo Dipyridamole,Novo Dipiradol
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

N J Curtin, and D R Newell, and A L Harris
June 1988, Biochemical pharmacology,
N J Curtin, and D R Newell, and A L Harris
August 1986, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
N J Curtin, and D R Newell, and A L Harris
February 1990, Inflammation,
N J Curtin, and D R Newell, and A L Harris
March 1980, Thrombosis research,
N J Curtin, and D R Newell, and A L Harris
March 1982, The Journal of pharmacy and pharmacology,
N J Curtin, and D R Newell, and A L Harris
February 1995, Nihon rinsho. Japanese journal of clinical medicine,
N J Curtin, and D R Newell, and A L Harris
January 1988, Methods in enzymology,
N J Curtin, and D R Newell, and A L Harris
October 2000, Biochimica et biophysica acta,
N J Curtin, and D R Newell, and A L Harris
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
N J Curtin, and D R Newell, and A L Harris
January 1989, Anticancer research,
Copied contents to your clipboard!