Inactivation of GIRK channels weakens the pre- and postsynaptic inhibitory activity in dorsal raphe neurons. 2017

Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.

The serotonergic tone of the dorsal raphe (DR) is regulated by 5-HT1A receptors, which negatively control serotonergic activity via the activation of G protein-coupled inwardly rectifying K+ (GIRK) channels. In addition, DR activity is modulated by local GABAergic transmission, which is believed to play a key role in the development of mood-related disorders. Here, we sought to characterize the role of GIRK2 subunit-containing channels on the basal electrophysiological properties of DR neurons and to investigate whether the presynaptic and postsynaptic activities of 5-HT1A, GABAB, and GABAA receptors are affected by Girk2 gene deletion. Whole-cell patch-clamp recordings in brain slices from GIRK2 knockout mice revealed that the GIRK2 subunit contributes to maintenance of the resting membrane potential and to the membrane input resistance of DR neurons. 5-HT1A and GABAB receptor-mediated postsynaptic currents were almost absent in the mutant mice. Spontaneous and evoked GABAA receptor-mediated transmissions were markedly reduced in GIRK2 KO mice, as the frequency and amplitude of spontaneous IPSCs were reduced, the paired-pulse ratio was increased and GABA-induced whole-cell currents were decreased. Similarly, the pharmacological blockade of GIRK channels with tertiapin-Q prevented the 5-HT1A and GABAB receptor-mediated postsynaptic currents and increased the paired-pulse ratio. Finally, deletion of the Girk2 gene also limited the presynaptic inhibition of GABA release exerted by 5-HT1A and GABAB receptors. These results indicate that the properties and inhibitory activity of DR neurons are highly regulated by GIRK2 subunit-containing channels, introducing GIRK channels as potential candidates for studying the pathophysiology and treatment of affective disorders.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D044282 Receptor, Serotonin, 5-HT1A A serotonin receptor subtype found distributed through the CENTRAL NERVOUS SYSTEM where they are involved in neuroendocrine regulation of ACTH secretion. The fact that this serotonin receptor subtype is particularly sensitive to SEROTONIN RECEPTOR AGONISTS such as BUSPIRONE suggests its role in the modulation of ANXIETY and DEPRESSION. Serotonin 1A Receptor,5-HT(1A) Receptor,5-HT1A Receptor,5-Hydroxytryptamine 1A Receptor,5-Hydroxytryptamine 1A Receptors,Receptor, 5-Hydroxytryptamine 1A,Serotonin Receptor, 5-HT1A,Serotonin, 5-HT1a Receptor,1A Receptor, 5-Hydroxytryptamine,1A Receptors, 5-Hydroxytryptamine,5 HT1A Receptor,5 Hydroxytryptamine 1A Receptor,5 Hydroxytryptamine 1A Receptors,5-HT1A Serotonin Receptor,5-HT1a Receptor Serotonin,Receptor Serotonin, 5-HT1a,Receptor, 5 Hydroxytryptamine 1A,Receptor, 5-HT1A,Receptor, 5-HT1A Serotonin,Receptor, Serotonin 1A,Receptors, 5-Hydroxytryptamine 1A,Serotonin Receptor, 5 HT1A,Serotonin, 5 HT1a Receptor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051676 G Protein-Coupled Inwardly-Rectifying Potassium Channels A family of inwardly-rectifying potassium channels that are activated by PERTUSSIS TOXIN sensitive G-PROTEIN-COUPLED RECEPTORS. GIRK potassium channels are primarily activated by the complex of GTP-BINDING PROTEIN BETA SUBUNITS and GTP-BINDING PROTEIN GAMMA SUBUNITS. G Protein-Activated Potassium Channels,G Protein-Coupled Inwardly-Rectifying Potassium Channel 1,G Protein-Coupled Inwardly-Rectifying Potassium Channel 2,G Protein-Coupled Inwardly-Rectifying Potassium Channel 3,G Protein-Coupled Inwardly-Rectifying Potassium Channel 4,GIRK Potassium Channels,GIRK1 Potassium Channel,GIRK2 Potassium Channel,GIRK3 Potassium Channel,GIRK4 Potassium Channel,Kir3 Potassium Channels,Kir3.1 Potassium Channel,Kir3.2 Potassium Channel,Kir3.3 Potassium Channel,Kir3.4 Potassium Channel,G Protein Activated Potassium Channels,G Protein Coupled Inwardly Rectifying Potassium Channel 1,G Protein Coupled Inwardly Rectifying Potassium Channel 2,G Protein Coupled Inwardly Rectifying Potassium Channel 3,G Protein Coupled Inwardly Rectifying Potassium Channel 4,G Protein Coupled Inwardly Rectifying Potassium Channels,Potassium Channel, GIRK1,Potassium Channel, GIRK2,Potassium Channel, GIRK3,Potassium Channel, GIRK4,Potassium Channel, Kir3.1,Potassium Channel, Kir3.2,Potassium Channel, Kir3.3,Potassium Channel, Kir3.4,Potassium Channels, GIRK,Potassium Channels, Kir3
D053444 Inhibitory Postsynaptic Potentials Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals. IPSP,Inhibitory Postsynaptic Currents,Current, Inhibitory Postsynaptic,Currents, Inhibitory Postsynaptic,IPSPs,Inhibitory Postsynaptic Current,Inhibitory Postsynaptic Potential,Postsynaptic Current, Inhibitory,Postsynaptic Currents, Inhibitory,Postsynaptic Potential, Inhibitory,Postsynaptic Potentials, Inhibitory,Potential, Inhibitory Postsynaptic,Potentials, Inhibitory Postsynaptic

Related Publications

Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
January 1985, Neuroscience letters,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
November 1987, Brain research bulletin,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
January 2015, PloS one,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
January 1992, Clinical neuropharmacology,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
August 2008, Synapse (New York, N.Y.),
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
January 2015, PloS one,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
March 2013, Annals of the New York Academy of Sciences,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
January 1976, Brain research,
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
October 1984, Sheng li ke xue jin zhan [Progress in physiology],
Nerea Llamosas, and Luisa Ugedo, and Maria Torrecilla
April 2009, The European journal of neuroscience,
Copied contents to your clipboard!