Na+/H+ antiporter in lacrimal acinar cell basal-lateral membranes. 1987

A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
Department of Physiology and Biophysics, University of Southern California, School of Medicine, Los Angeles 90033.

The first step in the formation of lacrimal gland fluid is believed to depend on transport systems which couple a flux of Cl- ions to the passive influx of Na+ ions across the acinar cell basal-lateral plasma membrane. The transport systems which mediate these fluxes have not yet been characterized, but a review of previous studies (Parod and Putney, Am J Physiol 239:G106, 1980) raises the possibility that Na+/H+ antiporters might represent a major pathway for Na+ influx. This conclusion is of interest, because antiporter mediated Na+ fluxes can, potentially, drive net Cl- fluxes. We have now examined a sample of basal-lateral membrane vesicles from rat exorbital lacrimal gland to verify the presence of a Na+/H+ antiporter activity. Imposition of an outward H+ gradient caused a 4.4-fold increase in the 22Na influx rate, while imposition of an outward Na+ gradient accelerated H+ uptake as determined by changes in acridine orange absorbance. All transport experiments were done in the presence of valinomycin and symmetrical K+ concentrations, eliminating the possibility of conductive Na+ or H+ fluxes driven by diffusion potentials. The pH gradient dependent Na+ influx was completely inhibited by 1 mM amiloride, indicating that it was mediated by a Na+/H+ antiporter similar to those described in other tissues. Comparison of the density distributions of Na+/H+ antiport and standard membrane marker enzyme activities confirmed that the antiporter was primarily localized to the basal-lateral membranes.

UI MeSH Term Description Entries
D007765 Lacrimal Apparatus The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system. Lacrimal Gland,Nasolacrimal Apparatus,Conjunctival Sacs,Lacrimal Ducts,Lacrimal Punctum,Lateral Canthus,Medial Canthus,Apparatus, Lacrimal,Apparatus, Nasolacrimal,Canthus, Lateral,Canthus, Medial,Conjunctival Sac,Duct, Lacrimal,Gland, Lacrimal,Lacrimal Duct,Lacrimal Glands,Lacrimal Punctums,Punctum, Lacrimal,Sac, Conjunctival
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017923 Sodium-Hydrogen Exchangers A family of plasma membrane exchange glycoprotein antiporters that transport sodium ions and protons across lipid bilayers. They have critical functions in intracellular pH regulation, cell volume regulation, and cellular response to many different hormones and mitogens. Na(+)-H(+)-Antiporter,Na(+)-H(+)-Exchanger,Sodium-Hydrogen Antiporter,Na(+)-H(+)-Antiporters,Na(+)-H(+)-Exchangers,SLC9 Na(+)-H(+) Exchangers,SLC9 Protein Family,SLC9 Proteins,SLC9-NHE Protein Family,Sodium-Hydrogen Antiporters,Sodium-Hydrogen Exchanger,Sodium-Proton Antiporter,Sodium-Proton Antiporters,Solute Carrier 9 Protein Family,Solute Carrier 9 Proteins,Antiporter, Sodium-Hydrogen,Antiporter, Sodium-Proton,Antiporters, Sodium-Hydrogen,Antiporters, Sodium-Proton,Exchanger, Sodium-Hydrogen,Exchangers, Sodium-Hydrogen,Protein Family, SLC9,Protein Family, SLC9-NHE,SLC9 NHE Protein Family,Sodium Hydrogen Antiporter,Sodium Hydrogen Antiporters,Sodium Hydrogen Exchanger,Sodium Hydrogen Exchangers,Sodium Proton Antiporter,Sodium Proton Antiporters

Related Publications

A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
August 1986, Investigative ophthalmology & visual science,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
September 1992, Nihon rinsho. Japanese journal of clinical medicine,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
November 1987, The American journal of physiology,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
December 1990, Pflugers Archiv : European journal of physiology,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
August 1981, Biochimica et biophysica acta,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
September 1998, Journal of medicinal chemistry,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
February 2013, Molecular membrane biology,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
September 1987, The American journal of physiology,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
August 1993, The Journal of laboratory and clinical medicine,
A K Mircheff, and C E Ingham, and R W Lambert, and K L Hales, and C B Hensley, and S C Yiu
September 1985, The Journal of biological chemistry,
Copied contents to your clipboard!