Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. 1987

D J Bigelow, and D D Thomas
Department of Biochemistry, University of Minnesota Medical School, Minneapolis 55455.

We have investigated the role of lipid and protein dynamics in the activation of the Ca2+-dependent ATPase in sarcoplasmic reticulum (SR) by diethyl ether. Conventional and saturation-transfer electron paramagnetic resonance (EPR) were used to probe rotational motions of spin labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase in SR. We confirm previous studies (Salama, G., and Scarpa, A. (1980) J. Biol. Chem. 255, 6525-6528; Salama, G., and Scarpa, A. (1983) Biochem. Pharmacol. 32, 3465-3477; Kidd, A., Scales, D., and Inesi, G. (1981) Biochem. Biophys. Acta 65, 124-131) reporting that addition of diethyl ether to SR results in an approximately 2-fold enzymatic activation, without loss of coupling. Diethyl ether progressively fluidizes the SR membrane with respect to lipid hydrocarbon chain dynamics probed at several depths in the bilayer. Digital substractions, used to analyze two-component lipid spin label spectra, reveal that a 2-fold mobilization occurs in the population of lipid probes motionally restricted by the protein, while the remaining more mobile population is less affected. The microwave saturation properties of lipid probes also indicate that restricted motions of these probes are mobilized in maximally activated SR membranes. Saturation-transfer EPR, applied to maleimide spin-labeled Ca-ATPase, demonstrates that a 2-fold increase in microsecond rotational motion of the Ca-ATPase correlates with the maximal enzymatic activation. Effects of diethyl ether on both the enzymatic activity and molecular dynamics are completely reversible by dilution with buffer. We propose that ether activates by selectively mobilizing lipid chains adjacent to the enzyme, thus facilitating protein motions that are essential for calcium transport.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004986 Ether A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes. Diethyl Ether,Ether, Ethyl,Ethyl Ether,Ether, Diethyl
D005019 Ethyl Ethers Organic compounds having ethyl groups bound to an oxygen atom. Ethoxy Compounds,Compounds, Ethoxy,Ethers, Ethyl
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

D J Bigelow, and D D Thomas
November 2003, FEBS letters,
D J Bigelow, and D D Thomas
July 1980, The Journal of biological chemistry,
D J Bigelow, and D D Thomas
December 1992, Seikagaku. The Journal of Japanese Biochemical Society,
D J Bigelow, and D D Thomas
November 1978, Proceedings of the National Academy of Sciences of the United States of America,
D J Bigelow, and D D Thomas
January 1969, Biokhimiia (Moscow, Russia),
D J Bigelow, and D D Thomas
March 1991, Journal of biochemistry,
Copied contents to your clipboard!