Immunosuppression by activated human neutrophils. Dependence on the myeloperoxidase system. 1987

A el-Hag, and R A Clark
Department of Medicine, Boston University Medical Center, MA 02118.

An in vitro model system was used to define the mechanism of interaction between human neutrophils and lymphocytes. Blood mononuclear leukocytes were exposed to purified neutrophils in the presence of a neutrophil-activating agent (phorbol ester, lectin, or opsonized particle). The treated mononuclear cells displayed a marked decrease in both natural killer activity and mitogen-dependent DNA synthesis, but no change in viability. This functional suppression was dependent on neutrophil number, stimulus concentration, and duration of exposure. Lymphocytes were protected by addition of catalase, but not superoxide dismutase. Neutrophils defective in oxidative metabolism (chronic granulomatous disease) failed to suppress lymphocyte function unless an H2O2-generating system, glucose oxidase plus glucose, was added. The patients' neutrophils provided a factor, possibly myeloperoxidase, which interacted with the glucose oxidase system. The immunosuppressive effect of normal neutrophils was diminished when chloride was omitted from the cultures and was enhanced when chloride was replaced by iodide. Myeloperoxidase-deficient neutrophils were partially defective in suppressing lymphocytes and this was corrected by addition of purified myeloperoxidase. Paradoxically, azide caused enhancement of suppression that depended on the neutrophil oxidative burst, but not on myeloperoxidase and was mediated at least in part by an effect of azide on the target mononuclear leukocytes. These data indicate that suppression of lymphocyte function by activated neutrophils is mediated by the secretion of myeloperoxidase and H2O2 that react with halides to form immunosuppressive products. Moreover, the mononuclear leukocytes contain an azide-sensitive factor, probably catalase, which provides partial protection against injury by neutrophil products. These dynamic interactions may be important local determinants of the immune response.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005949 Glucose Oxidase An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4. Microcid,Oxidase, Glucose

Related Publications

A el-Hag, and R A Clark
November 1980, The Journal of laboratory and clinical medicine,
A el-Hag, and R A Clark
December 2000, Biochemical and biophysical research communications,
A el-Hag, and R A Clark
June 1986, Journal of immunology (Baltimore, Md. : 1950),
A el-Hag, and R A Clark
February 1991, Analytical biochemistry,
A el-Hag, and R A Clark
March 1986, Biochemical and biophysical research communications,
A el-Hag, and R A Clark
March 1982, The Journal of biological chemistry,
A el-Hag, and R A Clark
November 2009, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!