lambda N antitermination system: functional analysis of phage interactions with the host NusA protein. 1987

A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109.

Coliphage lambda gene expression is regulated temporally by systems of termination and antitermination of transcription. The lambda-encoded N protein (pN) acting with host factors (Nus) at sites (nut) located downstream from early promoters is the first of these systems to operate during phage development. We report observations on some of the components of this complex system that, in part, address the way in which these elements interact to render RNA polymerase termination-resistant. (1) The isolation of a conditionally lethal cold-sensitive nusA mutation demonstrates that NusA is essential for bacterial growth. (2) The effect on lambda growth in a host in which the Salmonella NusA protein is overproduced suggests that NusA is essential for N-mediated antitermination in phage lambda. (3) A truncated NusA product, representing only the amino two-thirds of the native protein, is active for both bacterial growth and pN action, indicating that the carboxy end of the molecule may not be a functionally important region. (4) lambda pN can function with the heterologous nut region from Salmonella typhimurium phage P22 when lambda pN is overproduced, demonstrating that lambda pN can function with the nut regions of other lambdoid phages. (5) A single base-pair change in the lambda nutR boxA sequence that was selected to permit a lambda derivative to utilize the Salmonella NusA protein restores lambda growth in the Escherichia coli nusA1 host.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
January 1989, Genome,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
November 1997, Journal of molecular biology,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
March 1995, Journal of molecular biology,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
April 2006, Biochemistry,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
September 2004, Proceedings of the National Academy of Sciences of the United States of America,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
March 1996, Journal of molecular biology,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
April 2020, Scientific reports,
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
January 2009, Nucleic acids symposium series (2004),
A T Schauer, and D L Carver, and B Bigelow, and L S Baron, and D I Friedman
November 1997, Journal of molecular biology,
Copied contents to your clipboard!