Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. 2017

Hongzhi Lu, and Shoufang Xu
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors.

UI MeSH Term Description Entries
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005506 Food Contamination The presence in food of harmful, unpalatable, or otherwise objectionable foreign substances, e.g. chemicals, microorganisms or diluents, before, during, or after processing or storage. Food Adulteration,Adulteration, Food,Adulterations, Food,Contamination, Food,Contaminations, Food,Food Adulterations,Food Contaminations
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D001559 Benzhydryl Compounds Compounds which contain the methyl radical substituted with two benzene rings. Permitted are any substituents, but ring fusion to any of the benzene rings is not allowed. Diphenylmethyl Compounds,Compounds, Benzhydryl,Compounds, Diphenylmethyl
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing

Related Publications

Hongzhi Lu, and Shoufang Xu
November 2022, Langmuir : the ACS journal of surfaces and colloids,
Hongzhi Lu, and Shoufang Xu
December 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Hongzhi Lu, and Shoufang Xu
June 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
Hongzhi Lu, and Shoufang Xu
March 2020, Biosensors,
Hongzhi Lu, and Shoufang Xu
October 2017, Biosensors & bioelectronics,
Copied contents to your clipboard!