Light and electron microscopic study on cerebellar cortex of macular mutant mouse as a model of Menkes kinky hair disease. 1987

A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
Department of Pediatrics, Shiga University of Medical Science, Japan.

The macular mouse is a mutant mouse, the hemizygotes of which show clinical and biochemical abnormalities similar to those in Menkes kinky hair disease (MKHD) in humans. The cerebellar cortex of this mutant suckling mouse was examined by light and electron microscopy. In hemizygotes, the Purkinje cells showed a delay in the maturation of dendrites and somatic spines. Somal sprouts, abnormal mitochondria, and filamentous cytoplasmic inclusions were observed on these cells on day 13. Axonal swellings, containing abnormal mitochondrias were also seen in the inner granular layer. These findings correspond with those of MKHD in humans and those of the brindled mouse, another model mouse of MKHD.

UI MeSH Term Description Entries
D007706 Menkes Kinky Hair Syndrome An inherited disorder of copper metabolism transmitted as an X-linked trait and characterized by the infantile onset of HYPOTHERMIA, feeding difficulties, hypotonia, SEIZURES, bony deformities, pili torti (twisted hair), and severely impaired intellectual development. Defective copper transport across plasma and endoplasmic reticulum membranes results in copper being unavailable for the synthesis of several copper containing enzymes, including PROTEIN-LYSINE 6-OXIDASE; CERULOPLASMIN; and SUPEROXIDE DISMUTASE. Pathologic changes include defects in arterial elastin, neuronal loss, and gliosis. (From Menkes, Textbook of Child Neurology, 5th ed, p125) Hypocupremia, Congenital,Kinky Hair Syndrome,Menkes Syndrome,Steely Hair Syndrome,Congenital Hypocupremia,Copper Transport Disease,Kinky Hair Disease,Menkea Syndrome,Menkes Disease,Menkes' Disease,Steely Hair Disease,X-Linked Copper Deficiency,Congenital Hypocupremias,Copper Deficiencies, X-Linked,Copper Deficiency, X-Linked,Copper Transport Diseases,Deficiencies, X-Linked Copper,Deficiency, X-Linked Copper,Disease, Copper Transport,Disease, Steely Hair,Diseases, Copper Transport,Diseases, Kinky Hair,Diseases, Menkes',Diseases, Steely Hair,Hair Diseases, Kinky,Hair Diseases, Steely,Hypocupremias, Congenital,Kinky Hair Diseases,Menkea Syndromes,Menkes' Diseases,Steely Hair Diseases,Steely Hair Syndromes,Syndrome, Menkea,Syndrome, Steely Hair,Syndromes, Menkea,Syndromes, Steely Hair,Transport Disease, Copper,Transport Diseases, Copper,X Linked Copper Deficiency,X-Linked Copper Deficiencies
D008297 Male Males
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D001928 Brain Diseases, Metabolic Acquired or inborn metabolic diseases that produce brain dysfunction or damage. These include primary (i.e., disorders intrinsic to the brain) and secondary (i.e., extracranial) metabolic conditions that adversely affect cerebral function. Central Nervous System Metabolic Disorders,Encephalopathies, Metabolic,Metabolic Disorders, Brain,Acquired Metabolic Diseases, Brain,Acquired Metabolic Diseases, Nervous System,Acquired Metabolic Encephalopathies,Brain Diseases, Metabolic, Acquired,Brain Disorders, Metabolic,Brain Disorders, Metabolic, Acquired,Brain Syndrome, Metabolic,Brain Syndrome, Metabolic, Acquired,CNS Metabolic Disorders,CNS Metabolic Disorders, Acquired,Encephalopathy, Metabolic, Acquired,Metabolic Brain Diseases,Metabolic Brain Diseases, Acquired,Metabolic Brain Syndrome,Metabolic Brain Syndrome, Acquired,Metabolic Brain Syndromes,Metabolic Brain Syndromes, Acquired,Metabolic Diseases, Acquired, Nervous System,Metabolic Disorder, Central Nervous System, Acquired,Metabolic Disorders, CNS,Metabolic Disorders, CNS, Acquired,Metabolic Disorders, Central Nervous System,Metabolic Encephalopathies,Nervous System Acquired Metabolic Diseases,Acquired Metabolic Encephalopathy,Brain Disease, Metabolic,Brain Disorder, Metabolic,Brain Metabolic Disorder,Brain Metabolic Disorders,CNS Metabolic Disorder,Encephalopathies, Acquired Metabolic,Encephalopathy, Acquired Metabolic,Encephalopathy, Metabolic,Metabolic Brain Disease,Metabolic Brain Disorder,Metabolic Brain Disorders,Metabolic Disorder, Brain,Metabolic Disorder, CNS,Metabolic Encephalopathies, Acquired,Metabolic Encephalopathy,Metabolic Encephalopathy, Acquired
D002479 Inclusion Bodies A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed) Cellular Inclusions,Cytoplasmic Inclusions,Bodies, Inclusion,Body, Inclusion,Cellular Inclusion,Cytoplasmic Inclusion,Inclusion Body,Inclusion, Cellular,Inclusion, Cytoplasmic,Inclusions, Cellular,Inclusions, Cytoplasmic
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite

Related Publications

A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1994, Acta neuropathologica,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1988, Brain & development,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
February 1976, Investigative ophthalmology,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
August 1991, Toxicology and applied pharmacology,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1994, Biology of the neonate,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1991, Biology of the neonate,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1993, Research communications in chemical pathology and pharmacology,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1987, Physiological chemistry and physics and medical NMR,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
January 1988, Clinical neuropathology,
A Onaga, and H Kawasaki, and T Yamano, and M Shimada, and M Nishimura
August 1974, Neuropadiatrie,
Copied contents to your clipboard!