The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. 1987

R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, U.K.

1. Nitrogenase activity of a strain of Azotobacter chroococcum lacking the structural genes for conventional nitrogenase (nifHDK) was separated into two components: an Fe-containing protein and a vanadoprotein. 2. The larger protein was purified to homogeneity by the criterion of electrophoresis of 10% (w/v) acrylamide gels in the presence of SDS. Two types of subunit, of Mr 50,000 and 55,000, were present in equal amounts. 3. The protein had an Mr of 210,000 and contained 2 V atoms, 23 Fe atoms and 20 acid-labile sulphide groups per molecule. The Mo content was less than 0.06 g-atom/mol. All the common amino acids were present, with a predominance of acidic residues. Ultracentrifugal analysis gave a maximum sedimentation coefficient of 9.7 S and a symmetrical boundary at 5 mg of protein X ml-1; dissociation occurred at lower concentrations. The specific activities (nmol of product/min per mg of protein), when assayed under optimum conditions with the complementary Fe protein from this strain, were 1348 for H2 evolution, 350 for NH3 formation and 608 for acetylene reduction. Activity was O2-labile, with a t1/2 of 40 s in air. At low temperatures the dithionite-reduced protein showed e.p.r. signals at g = 5.6, 4.35, 3.77 and 1.93, consistent with an S = 3/2 ground state with an additional S = 1/2 centre giving rise to the feature at g = 1.93. The u.v. spectra of dithionite-reduced and thionine-oxidized protein were very similar. Oxidation resulted in a general increase in absorbance in the visible region. The shoulder at 380 nm in the spectrum of reduced protein was replaced with shoulders near 330 nm and 420 nm on oxidation.

UI MeSH Term Description Entries
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
November 1988, The Biochemical journal,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
February 1988, The Biochemical journal,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
December 1975, European journal of biochemistry,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
February 1989, The Biochemical journal,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
June 2009, Proceedings of the National Academy of Sciences of the United States of America,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
January 1969, Biochimica et biophysica acta,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
February 1988, The Biochemical journal,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
December 1971, European journal of biochemistry,
R R Eady, and R L Robson, and T H Richardson, and R W Miller, and M Hawkins
December 1988, The Biochemical journal,
Copied contents to your clipboard!