Insulin-mimetic effect of trypsin on the insulin receptor tyrosine kinase in intact adipocytes. 1987

J W Leef, and J Larner
Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908.

It has previously been demonstrated that the insulin-mimetic agent trypsin stimulates autophosphorylation of purified insulin receptors and activates the insulin receptor tyrosine kinase in vitro. We now report the effects of trypsin on whole cell tyrosine kinase activation and insulin receptor autophosphorylation. Trypsin treatment of intact adipocytes produces a time-dependent stimulation of tyrosine kinase activity as measured in lectin extracts containing the insulin receptor, or specifically immunoprecipitated insulin receptor samples. Trypsin treatment of adipocytes also results in a loss of insulin binding capacity, and a linear correlation exists between loss of binding and stimulation of tyrosine kinase activity. Exposure of adipocytes to trypsin is known to result in a time- and dose-dependent activation of intracellular glycogen synthase. Examination of the time courses of stimulation of tyrosine kinase and glycogen synthase activation in our system indicates that the stimulation of tyrosine kinase activity by trypsin occurs with sufficient rapidity and magnitude to be consistent with a role of phosphorylation in the activation of glycogen synthase. Trypsin has further been demonstrated to stimulate autophosphorylation of the beta-subunit of the insulin receptor in intact adipocytes. Cells prelabeled with [32P]PO4 for 2 h were exposed to trypsin, and receptors were partially purified over wheat germ agglutinin-agarose columns. Receptors were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the beta-subunit was identified by autoradiography. The protein was extracted and hydrolyzed, and the phosphoamino acids were separated by electrophoresis and quantitated. Two- and five-fold increases in phosphotyrosine were observed with 3 and 10 min of trypsin treatment, respectively. We conclude that trypsin-induced cleavage of the insulin receptor alpha-subunit is relevant to the ability of trypsin to activate the insulin receptor tyrosine kinase in intact adipocytes. We further conclude that autophosphorylation of the insulin receptor and activation of its tyrosine kinase by trypsin may be important to the insulin-mimetic anabolic effects of trypsin.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J W Leef, and J Larner
September 1988, Biochemical and biophysical research communications,
J W Leef, and J Larner
June 1972, Biochimica et biophysica acta,
J W Leef, and J Larner
June 2010, Biological trace element research,
Copied contents to your clipboard!