Independent regulation of human neutrophil chemotactic receptors after activation. 1987

J G Bender, and D E Van Epps, and D E Chenoweth
Department of Pathology, University of New Mexico, School of Medicine, Albuquerque 87131.

The fluoresceinated chemotactic factors, C5a, formyl-methionyl-leucyl-phenylalanyl-lysine (FMLPL), and casein were used in conjunction with flow cytometry to examine chemotactic factor receptor expression on polymorphonuclear leukocytes (PMN) activated with phorbol myristate acetate (PMA), C5a, or formyl-methionyl-leucyl-phenylalanine. Activation with PMA resulted in a dose-dependent increase in binding of fluorescein-labeled (FL)-casein and (FL-FMLPL) over the range of PMA concentrations from 0.5 to 50 ng/ml. In contrast, activation of PMN with PMA resulted in a dose-dependent decrease in FL-C5a binding, and activation with concentrations above 5 ng/ml resulted in a complete loss of binding. This loss of binding was not caused by inactivation of the ligand or prevented by the addition of superoxide dismutase and catalase or protease inhibitors. Furthermore, incubation of PMN with supernatants from PMN stimulated to degranulate did not reduce the availability of C5a receptors. This pattern of increased FMLPL and casein binding with decreased C5a binding was also observed with cytochalasin B-pretreated PMN that were stimulated with chemotactic factors. Parallel studies of superoxide anion generation demonstrated that PMA-treated PMN were still responsive to formyl-methionyl-leucyl-phenylalanine, but not to C5a. These data demonstrate that the activation of PMN up-regulates formyl peptide and casein receptors whereas C5a receptors are down-regulated under similar conditions.

UI MeSH Term Description Entries
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

J G Bender, and D E Van Epps, and D E Chenoweth
May 2005, Journal of immunology (Baltimore, Md. : 1950),
J G Bender, and D E Van Epps, and D E Chenoweth
January 1974, Antibiotics and chemotherapy,
J G Bender, and D E Van Epps, and D E Chenoweth
February 1983, Journal of immunology (Baltimore, Md. : 1950),
J G Bender, and D E Van Epps, and D E Chenoweth
August 1999, Inflammation,
J G Bender, and D E Van Epps, and D E Chenoweth
March 2002, Experimental lung research,
J G Bender, and D E Van Epps, and D E Chenoweth
January 2004, Immunologic research,
J G Bender, and D E Van Epps, and D E Chenoweth
January 1987, Journal of immunology (Baltimore, Md. : 1950),
J G Bender, and D E Van Epps, and D E Chenoweth
March 2007, BioEssays : news and reviews in molecular, cellular and developmental biology,
J G Bender, and D E Van Epps, and D E Chenoweth
March 1990, Journal of immunology (Baltimore, Md. : 1950),
J G Bender, and D E Van Epps, and D E Chenoweth
April 1990, Archives of surgery (Chicago, Ill. : 1960),
Copied contents to your clipboard!