On the evolutionary stability of the female-biased sex ratio in the wood lemming (Myopus schisticolor): the effect of inbreeding. 1978

J M Smith, and N C Stenseth

The evolutionary stability of the female-biased sex ratio observed in the wood lemming (Myopus schisticolor) is discussed. The hypothesis analysed is that the skewed sex ratio is maintained as a result of partial and/or recurrent inbreeding. Fredga et al. (1976, 1977) have suggested that an X-linked mutant gene, X, affects the male-determining action of the Y chromosome, thus converting some XY individuals into females. By a mechanism of selective non-disjunction in the foetal ovary only X-carrying eggs are produced. In particular the stability of that genetic mechanism (or the X chromosome) is analysed by considering the introduction of a "suppressing" sex-linked mutant gene Y. Several deterministic simulation models assuming father-daughter and/or brother-sister matings have been developed and analysed. It is concluded that in the case of extremely strong inbreeding, the hypothesised genetic mechanism may, as a result, be evolutionarily stable. Interpreting field observations on microtine rodents in general it is concluded that only a few species are likely to experience such extreme cases of inbreeding. The wood lemming and the related collared lemming (Dicrostonyx troquatus), another case which seems to have XY-females, are likely to exhibit sufficiently strong inbreeding.

UI MeSH Term Description Entries
D007178 Inbreeding The mating of plants or non-human animals which are closely related genetically. Backcrossing,Half-Sib Mating,Sib Mating,Genetic Inbreeding,Backcrossings,Genetic Inbreedings,Half Sib Mating,Half-Sib Matings,Inbreeding, Genetic,Mating, Half-Sib,Mating, Sib,Matings, Half-Sib,Matings, Sib,Sib Matings
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012377 Rodentia A mammalian order which consists of 29 families and many genera. Beavers,Capybaras,Castor Beaver,Dipodidae,Hydrochaeris,Jerboas,Rodents,Beaver,Capybara,Hydrochaeri,Jerboa,Rodent,Rodentias
D012730 Sex Chromosomes The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Gonosomes,Chromosome, Sex,Chromosomes, Sex,Gonosome,Sex Chromosome
D012744 Sex Ratio The number of males per 100 females. Ratio, Sex,Ratios, Sex,Sex Ratios

Related Publications

J M Smith, and N C Stenseth
January 1976, Cytogenetics and cell genetics,
J M Smith, and N C Stenseth
January 1993, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
J M Smith, and N C Stenseth
January 1982, Human genetics,
J M Smith, and N C Stenseth
January 2000, Cytogenetics and cell genetics,
Copied contents to your clipboard!