Synthesis and biological effects of 2'-fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil. 1987

T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
Laboratory of Pharmacology, Sloan-Kettering Institute for Cancer Research, New York, New York 10021.

2'-Fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil (FEAU) was synthesized, and its biological activities were compared with those of 2'-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (FMAU). Earlier studies indicated that both compounds showed potent anti-herpes simplex virus activity, with a 50% effective dose (ED50) of less than 0.25 microM. In the present study the cell growth inhibitory activity of FEAU (ED50, 200 to 2,060 microM) was found to be about 100-fold less than that of FMAU. With an ED50 ranging from 630 to 3,700 microM, FEAU only weakly inhibited thymidine incorporation into DNA, as compared with FMAU with an ED50 of 9 to 28 microM. Following exposure to [2-14C]FEAU (100 microM), 0.48 pmol/10(6) cells per h was incorporated into the DNA of herpes simplex virus type 1-infected Vero cells, whereas no detectable incorporation was found in uninfected Vero cells or L1210 cells. The Ki of FEAU for thymidine kinase purified from human leukemic cells was greater than 150 microM. For herpes simplex virus type 1- and 2-encoded thymidine kinases, the Kis were 0.6 and 0.74 microM, respectively. Both FEAU and FMAU were relatively nontoxic for mice, with a 50% lethal dose of greater than 800 mg/kg per day (four intraperitoneal doses). However, the lethal dose of FEAU for dogs was 100 mg/kg per day (10 intravenous doses), a dose which is 40- to 80-fold greater than the toxic dose of FMAU. These results suggest that FEAU is a worthy candidate for further development as an antiherpetic agent.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001086 Arabinofuranosyluracil A pyrimidine nucleoside formed in the body by the deamination of CYTARABINE. Ara-U,Arabinosyluracil,Arauridine,Sponguridine,Uracil Arabinofuranoside,Uracil Arabinoside,1-beta-D-Arabinofuranosyl Uracil,NSC 68928,1 beta D Arabinofuranosyl Uracil,Ara U,Arabinofuranoside, Uracil,Arabinoside, Uracil,Uracil, 1-beta-D-Arabinofuranosyl
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis

Related Publications

T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
June 2007, European journal of nuclear medicine and molecular imaging,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
January 2011, Current radiopharmaceuticals,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
August 1988, Journal of medicinal chemistry,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
December 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
August 1994, Journal of medicinal chemistry,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
January 2012, Molecular imaging,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
May 2004, Nuclear medicine and biology,
T C Chou, and X B Kong, and M P Fanucchi, and Y C Cheng, and K Takahashi, and K A Watanabe, and J J Fox
November 1981, Antiviral research,
Copied contents to your clipboard!