Opioid delta-receptor involvement in supraspinal and spinal antinociception in mice. 1987

J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
Department of Pharmacology, University of Arizona Health Sciences Center, Tucson 85724.

The possibility that the opioid delta-receptor mediates antinociception in tests where heat is the noxious stimulus was investigated using highly selective mu- and delta-agonist and -antagonists. Antinociceptive dose-response curves were constructed for mu ([D-Ala2,NMePhe4,Gly-ol]enkephalin, DAGO; morphine) and delta ([D-Pen2,D-Pen5]enkephalin, DPDPE)-agonists in the absence, and in the presence of the mu non-surmountable antagonist, beta-funaltrexamine (beta-FNA) or the delta-antagonist ICI 174,864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH, where Aib is alpha-amino-isobutyric acid). Agonists and ICI 174,864 were given alone in the same intracerebroventricular (i.c.v.) or intrathecal (i.th.) injection to mice 20 min prior to testing in the warm-water (55 degrees C) tail-withdrawal test (+10 min for i.th. DPDPE); beta-FNA was given as a single i.c.v. or i.th. pretreatment dose (20 and 0.01 nM, respectively) 4 h prior to testing. I.c.v. pretreatment with beta-FNA resulted in a rightward displacement of the DAGO and morphine antinociceptive dose-response lines, but failed to displace the i.c.v. DPDPE curve. Similarly, i.th. pretreatment with beta-FNA displaced the i.th. morphine dose-response curve to the right without affecting the i.th. DPDPE antinociceptive dose-response line. ICI 174,864 (1 and 3 micrograms) produced a dose-related antagonism of i.c.v. or i.th. DPDPE, but did not alter the antinociceptive effects of DAGO or morphine given by the same routes. Co-administration of ICI 174,864 (3 micrograms) with i.c.v. morphine in beta-FNA pretreated (but not control) mice resulted in a further rightward displacement of the morphine dose-response line.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
March 1998, European journal of pharmacology,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
January 1990, NIDA research monograph,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
April 1988, Trends in pharmacological sciences,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
June 1994, Methods and findings in experimental and clinical pharmacology,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
January 1993, Life sciences,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
December 1992, The Journal of pharmacology and experimental therapeutics,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
January 2000, European journal of pharmacology,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
June 1998, The Journal of pharmacology and experimental therapeutics,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
November 1999, Pain,
J S Heyman, and S A Mulvaney, and H I Mosberg, and F Porreca
June 2009, Peptides,
Copied contents to your clipboard!