Sensitive DIP-STR markers for the analysis of unbalanced mixtures from "touch" DNA samples. 2017

Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Ch. de la Vulliette 4, 1000 Lausanne, Switzerland.

Casework samples collected for forensic DNA analysis can produce genomic mixtures in which the DNA of the alleged offender is masked by high quantities of DNA coming from the victim. DIP-STRs are novel genetic markers specifically developed to enable the target analysis of a DNA of interest in the presence of exceeding quantities of a second DNA (up to 1000-fold). The genotyping system, which is based on allele-specific amplifications of haplotypes formed by a deletion/insertion polymorphism (DIP) and a short tandem repeat (STR), combines the capacity of targeting the DNA of an individual with a strong identification power. Finally, DIP-STRs are autosomal markers therefore they can be applied to any combination of major and minor DNA. In this study we aimed to assess the ability of DIP-STRs to detect the minor contributor on challenging "touch" DNA samples simulated with representative crime-associated substrates and to compare their performance to commonly used male-specific markers (Y-STRs). As part of a comprehensive study on the relative DNA contribution of two persons handling the same object, we selected 71 unbalanced contact traces of which 14 comprised a male minor DNA contributor mixed to a female major DNA contributor. Using a set of six DIP-STRs, one to four markers were found to be informative for the minor DNA detection across traces. When compared to Y-STRs (14 traces), the DIP-STRs showed similar sensitivity in detecting the minor DNA across substrate materials with a similar occurrence of allele drop-out. Conversely, because of the sex combination of the two users of the object, 57 remaining traces could only be investigated by DIP-STRs. Of these, 30 minor DNA contributors could be detected by all informative markers while 12 traces showed events of allele drop-out. Finally, 15 traces showed no amplification of the minor DNA. These last 15 samples were mostly characterized by a combination of short handling time of the object, low DNA recovery and/or one single informative DIP-STR. In conclusion, the DIP-STRs represent alternative markers to help solving unbalanced two-source DNA mixtures, and also those produced from contact stains. These markers, in addition to a novel set of 10 DIP-STRs specifically developed according to forensic technical standards, will offer a valuable tool complementary to Y-STR markers.

UI MeSH Term Description Entries
D008297 Male Males
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016172 DNA Fingerprinting A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population. DNA Fingerprints,DNA Profiling,DNA Typing,Genetic Fingerprinting,DNA Fingerprint,DNA Fingerprintings,DNA Profilings,DNA Typings,Fingerprint, DNA,Fingerprinting, DNA,Fingerprinting, Genetic,Fingerprintings, DNA,Fingerprintings, Genetic,Fingerprints, DNA,Genetic Fingerprintings,Profiling, DNA,Typing, DNA,Typings, DNA
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions
D060005 Genotyping Techniques Methods used to determine individuals' specific ALLELES or SNPS (single nucleotide polymorphisms). Genotype Assignment Methodology,Genotype Calling Methods,Genotype Determination Methods,Assignment Methodologies, Genotype,Assignment Methodology, Genotype,Calling Method, Genotype,Calling Methods, Genotype,Determination Method, Genotype,Determination Methods, Genotype,Genotype Assignment Methodologies,Genotype Calling Method,Genotype Determination Method,Genotyping Technique,Method, Genotype Calling,Method, Genotype Determination,Methodologies, Genotype Assignment,Methodology, Genotype Assignment,Methods, Genotype Calling,Methods, Genotype Determination,Technique, Genotyping,Techniques, Genotyping
D018895 Microsatellite Repeats A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs). Microsatellite Markers,Pentanucleotide Repeats,Simple Repetitive Sequence,Tetranucleotide Repeats,Microsatellites,Short Tandem Repeats,Simple Sequence Repeats,Marker, Microsatellite,Markers, Microsatellite,Microsatellite,Microsatellite Marker,Microsatellite Repeat,Pentanucleotide Repeat,Repeat, Microsatellite,Repeat, Pentanucleotide,Repeat, Short Tandem,Repeat, Simple Sequence,Repeat, Tetranucleotide,Repeats, Microsatellite,Repeats, Pentanucleotide,Repeats, Short Tandem,Repeats, Simple Sequence,Repeats, Tetranucleotide,Repetitive Sequence, Simple,Repetitive Sequences, Simple,Sequence Repeat, Simple,Sequence Repeats, Simple,Sequence, Simple Repetitive,Sequences, Simple Repetitive,Short Tandem Repeat,Simple Repetitive Sequences,Simple Sequence Repeat,Tandem Repeat, Short,Tandem Repeats, Short,Tetranucleotide Repeat

Related Publications

Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
April 2013, Human mutation,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
January 2021, International journal of legal medicine,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
January 2014, Forensic science international. Genetics,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
November 2017, Forensic science international. Genetics,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
March 2018, Biochemical and biophysical research communications,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
July 2019, Electrophoresis,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
July 2014, Forensic science international. Genetics,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
October 2011, Journal of forensic and legal medicine,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
May 2015, Journal of forensic sciences,
Fabio Oldoni, and Vincent Castella, and Frederic Grosjean, and Diana Hall
March 2022, Forensic science international. Genetics,
Copied contents to your clipboard!