Alpha- and beta-adrenergic receptors in proximal tubules of rat kidney. 1987

P R Sundaresan, and T L Fortin, and S L Kelvie
Department of Pharmacology, University of Rochester Medical Center, New York 14642.

Proximal tubules were isolated from the rat kidney by collagenase digestion of the cortical tissue followed by Percoll gradient centrifugation. Microscopic and hormone-stimulated adenylate cyclase activity studies proved the purity of the preparation. [3H]Prazosin, [3H]rauwolscine, and [125I]iodocyanopindolol were used to identify and quantitate respectively the alpha 1-, alpha 2- and beta-adrenergic receptors. Proximal tubular (F4) particulate fraction was compared against other cortical nephron segment (F1, F2) fractions and the total collagenase-digested cortex particulate suspension (Ft). Proximal tubules were enriched in alpha 1- and alpha 2-adrenergic receptors compared with Ft (alpha 1-receptor, 100.4 +/- 4.5 vs. 87.4 +/- 4.9; alpha 2-receptor, 250 +/- 16.2 vs. 185.1 +/- 12 fmol/mg protein). The fractions enriched in glomeruli and distal tubular segments (F1, F2) had relatively low concentrations of alpha 1- and alpha 2-adrenergic receptors. In contrast, beta-adrenergic receptor concentration in the proximal tubules was approximately 25% of that in the Ft fraction and approximately 10% of that in the F1 fraction. Isoproterenol-stimulated adenylate cyclase activities in the different fractions corroborated well with the pattern suggested by the [125I]iodocyanopindolol binding studies. Our results suggest that whole-cortex preparation radioligand binding studies may reflect proximal tubular alpha 1- and alpha 2-adrenergic receptor changes quite well. They may, however, miss or give erroneous impressions about beta-adrenergic receptor changes occurring in different cortical nephron segments.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D010869 Pindolol A moderately lipophilic beta blocker (ADRENERGIC BETA-ANTAGONISTS). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638) Prindolol,LB-46,Visken,LB 46,LB46
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

P R Sundaresan, and T L Fortin, and S L Kelvie
July 1990, Canadian journal of physiology and pharmacology,
P R Sundaresan, and T L Fortin, and S L Kelvie
October 1980, European journal of pharmacology,
P R Sundaresan, and T L Fortin, and S L Kelvie
July 1980, Nature,
P R Sundaresan, and T L Fortin, and S L Kelvie
August 1980, Biochimica et biophysica acta,
P R Sundaresan, and T L Fortin, and S L Kelvie
January 1981, The American journal of physiology,
P R Sundaresan, and T L Fortin, and S L Kelvie
January 1985, Journal of cardiovascular pharmacology,
P R Sundaresan, and T L Fortin, and S L Kelvie
May 1989, Nederlands tijdschrift voor geneeskunde,
P R Sundaresan, and T L Fortin, and S L Kelvie
July 1982, Biochemical pharmacology,
P R Sundaresan, and T L Fortin, and S L Kelvie
January 1982, Life sciences,
P R Sundaresan, and T L Fortin, and S L Kelvie
February 2001, Kidney international,
Copied contents to your clipboard!