Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway. 2017

Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.

Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.

UI MeSH Term Description Entries
D008297 Male Males
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch

Related Publications

Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
December 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
May 2021, Experimental neurology,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
January 2021, Frontiers in cell and developmental biology,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
April 2019, Anatolian journal of cardiology,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
April 2019, Neural regeneration research,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
January 2021, Brain and behavior,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
April 2024, Brain research bulletin,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
February 2021, Journal of neurosurgical sciences,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
July 2012, Neurochemical research,
Junhong Guan, and Xiangtai Wei, and Shengtao Qu, and Tao Lv, and Qiang Fu, and Ye Yuan
August 2019, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!