Mechanism of resistance of noncycling mammalian cells to 4'-(9-acridinylamino)methanesulfon-m-anisidide: comparison of uptake, metabolism, and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures. 1988

M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
Section of Oncology, University of Auckland School of Medicine, Private Bag, New Zealand.

Resistance of noncycling cells to amsacrine (m-AMSA) has been widely reported and may limit the activity of this drug against solid tumors. The biochemical mechanism(s) for this resistance have been investigated using spontaneously transformed Chinese hamster fibroblasts (AA8 cells, a subline of Chinese hamster ovary-cells) in log- and plateau-phase spinner cultures. In early plateau phase most cells entered a growth-arrested state with a G1-G0 DNA content and showed a marked decrease in sensitivity to cytotoxicity induced by a 1-h exposure to m-AMSA or to its solid tumor-active analogue, CI-921. Studies with radiolabeled m-AMSA established that similar levels of drug were accumulated by log- and plateau-phase cells and that there was no significant drug metabolism in either of these cultures after 1 h. However, marked differences in sensitivity to m-AMSA-induced DNA breakage were observed using a fluorescence assay for DNA unwinding (Kanter P.M., and Schwartz, H.S., Mol. Pharmacol., 22: 145-151, 1982). Changes in sensitivity to DNA breakage occurred in parallel with changes in sensitivity to m-AMSA-induced cell killing. DNA breaks disappeared rapidly after drug removal (half-time approximately 4 min), suggesting that these lesions were probably mediated by DNA topoisomerase II. Resistance to m-AMSA may therefore be associated with changes in topoisomerase II activity in noncycling cells.

UI MeSH Term Description Entries
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000677 Amsacrine An aminoacridine derivative that intercalates into DNA and is used as an antineoplastic agent. m-AMSA,AMSA,AMSA P-D,Amsacrina,Amsidine,Amsidyl,Cain's Acridine,NSC-141549,NSC-156303,NSC-249992,SN-11841,SN11841,meta-AMSA,AMSA P D,AMSA PD,Cain Acridine,Cains Acridine,NSC 141549,NSC 156303,NSC 249992,NSC141549,NSC156303,NSC249992,SN 11841,meta AMSA

Related Publications

M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
July 1981, Cancer research,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
July 1981, Cancer research,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
March 1988, Biochimica et biophysica acta,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
May 1984, Cancer research,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
July 1981, Radiation research,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
March 1984, Proceedings of the National Academy of Sciences of the United States of America,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
January 1980, Cancer clinical trials,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
September 1989, Cancer research,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
January 1979, Cancer treatment reports,
M A Robbie, and B C Baguley, and W A Denny, and J B Gavin, and W R Wilson
February 1983, American journal of clinical oncology,
Copied contents to your clipboard!