Characterization of the regulatory thioredoxin site of phosphoribulokinase. 1988

M A Porter, and C D Stringer, and F C Hartman
Biology Division, Oak Ridge National Laboratory, Tennessee 37830.

Phosphoribulokinase is light-regulated via thioredoxin by reversible oxidation/reduction of sulfhydryl/disulfide groups. To identify the cysteinyl residues that are involved in regulation, the S-carboxymethyl labeling patterns of the fully reduced (active) and oxidized (inactive) forms of the enzyme were compared. Tryptic digests of the reduced, [14C]carboxymethylated enzyme contained four labeled peptides, all of which were purified and sequenced by Edman degradation. If the enzyme was oxidized by 5,5'-dithiobis-(2-nitrobenzoic acid) prior to carboxymethylation and tryptic digestion, only two labeled peptides were observed, thereby revealing the identity of the regulatory cysteines as Cys-16 and Cys-55. The former was previously implicated as part of the nucleotide-binding domain of the active site (Porter, M.A., and Hartman, F.C. (1986) Biochemistry 25, 7314-7318), a conclusion reinforced by the present observation that the sequence around the Cys-16 is similar to a consensus sequence of ATP-binding sites from a number of proteins of diverse phylogenetic origin (Higgins, C.F., Hiles, I.D., Salmond, G.P.C., Gill, D.R., Downie, J.A., Evans, I.J., Holland, I.B., Gray, L., Buckel, S.D., Bell, A.W., and Hermondson, M. (1986) Nature 323, 448-450). The regulatory disulfide of phosphoribulokinase was found to be intrasubunit based on the stoichiometry of the oxidation and the failure to resolve oxidized and reduced enzyme by gel filtration under dissociation conditions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

M A Porter, and C D Stringer, and F C Hartman
November 1999, Biochemistry,
M A Porter, and C D Stringer, and F C Hartman
February 1998, Archives of biochemistry and biophysics,
M A Porter, and C D Stringer, and F C Hartman
July 1978, Archives of biochemistry and biophysics,
M A Porter, and C D Stringer, and F C Hartman
February 1996, The Journal of biological chemistry,
M A Porter, and C D Stringer, and F C Hartman
May 1991, European journal of biochemistry,
M A Porter, and C D Stringer, and F C Hartman
March 2000, The Journal of biological chemistry,
M A Porter, and C D Stringer, and F C Hartman
June 2022, Plant & cell physiology,
M A Porter, and C D Stringer, and F C Hartman
September 1990, Archives of biochemistry and biophysics,
M A Porter, and C D Stringer, and F C Hartman
September 1985, Planta,
Copied contents to your clipboard!