Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4. 1988

J A Maclouf, and R C Murphy
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.

Transformation of leukotriene (LT) A4 into leukotriene C4 has been found to be carried out by human platelets in a rather efficient manner. LTC4 was characterized by a combination of high performance liquid chromatography, UV spectrophotometry, use of labeled precursor, guinea pig ileum bioassay, and enzyme immunoassay. LTA4 metabolism was found to be substrate-dependent, time-dependent, and proportional to platelet concentration even at sub- or supraphysiological levels (0.0019-1 X 10(9) platelets/ml). Neither plasma alone nor the supernatant of resting or activated platelets was found to catalyze the production of LTC4 in the presence or in the absence of reduced glutathione. These data suggest that platelets contain a glutathione S-transferase specific for LTC4 biosynthesis. The formation of LTC4 was greatly enhanced when LTA4 was incubated with platelets in the presence of albumin. Low concentrations of albumin (2-4 g/liter) stabilized LTA4 to an extent that conversion into LTC4 by the platelets could be detected after 1 h of incubation. The possible intercellular transfer of LTA4 between neutrophils and platelets was tested. The production of LTC4 by neutrophils was greatly enhanced in the presence of platelets. Furthermore, the supernatant of neutrophils stimulated with the calcium ionophore contained a short-lived acid-labile substance which was converted by the platelets into LTC4. When platelets were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]glutathione, the coincubation of both cell types challenged with the calcium ionophore resulted in the production of [35S] LTC4. These data indicate that platelets can produce large amounts of LTC4 from neutrophil-derived LTA4. They also suggest that such interactions may occur in vivo and that platelets could be an important contribution to the generation of the biologically active LTC4.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013189 SRS-A A group of LEUKOTRIENES; (LTC4; LTD4; and LTE4) that is the major mediator of BRONCHOCONSTRICTION; HYPERSENSITIVITY; and other allergic reactions. Earlier studies described a "slow-reacting substance of ANAPHYLAXIS" released from lung by cobra venom or after anaphylactic shock. The relationship between SRS-A leukotrienes was established by UV which showed the presence of the conjugated triene. (From Merck Index, 11th ed) Slow Reacting Substance of Anaphylaxis
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D017572 Leukotriene A4 (2S-(2 alpha,3 beta(1E,3E,5Z,8Z)))-3-(1,3,5,8-Tetradecatetraenyl)oxiranebutanoic acid. An unstable allylic epoxide, formed from the immediate precursor 5-HPETE via the stereospecific removal of a proton at C-10 and dehydration. Its biological actions are determined primarily by its metabolites, i.e., LEUKOTRIENE B4 and cysteinyl-leukotrienes. Alternatively, leukotriene A4 is converted into LEUKOTRIENE C4 by glutathione-S-transferase or into 5,6-di-HETE by the epoxide-hydrolase. (From Dictionary of Prostaglandins and Related Compounds, 1990) LTA4,Leukotriene A,Leukotriene A-4,Leukotrienes A,Leukotriene A 4

Related Publications

J A Maclouf, and R C Murphy
January 1987, Advances in prostaglandin, thromboxane, and leukotriene research,
J A Maclouf, and R C Murphy
June 1986, Biochimica et biophysica acta,
J A Maclouf, and R C Murphy
November 1992, Archives of biochemistry and biophysics,
J A Maclouf, and R C Murphy
September 1984, The Journal of biological chemistry,
Copied contents to your clipboard!